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Abstract. Machine learningmodels arewidespread inmanydifferent fields due to
their remarkable performances in many tasks. Some require greater interpretabil-
ity, which often signifies that it is necessary to understand the mechanism under-
lying the algorithms. Feature importance is the most common explanation and is
essential in data mining, especially in applied research. There is a frequent need
to compare the effect of features over time, across models, or even across studies.
For this, a single metric for each feature shared by all may be more suitable. Thus,
analystsmay gain better first-order insights regarding feature behavior across these
different scenarios. The β-coefficients of additive models, such as logistic regres-
sions, have been widely used for this purpose. They describe the relationships
among predictors and outcomes in a single number, indicating both their direc-
tion and size. However, for black-box models, there is no metric with these same
characteristics. Furthermore, even the β-coefficients in logistic regression models
have limitations. Hence, this paper discusses these limitations together with the
existing alternatives for overcoming them, and proposes new metrics of feature
importance. As with the coefficients, these metrics indicate the feature effect’s
size and direction, but in the probability scale within a model-agnostic frame-
work. An experiment conducted on openly available breast cancer data from the
UCI Archive verified the suitability of these metrics, and another on real-world
data demonstrated how they may be helpful in practice.
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1 Introduction

Explainable artificial intelligence (XAI) is an emerging research area that enables black-
box models to become trustworthy for humans. With a growing interest in explaining
machine learning (ML)models to fill the gap between interpretability and prediction per-
formance, over the past few years, many techniques have been proposed, and explain-
ability has become an essential subfield of ML [1]. This combination has helped the
spread of ML in applied research areas even more, such as in education, healthcare,
finance, and social media.
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For instance, simply classifying a patient in a hospital into a particular health status
is not particularly helpful. It is more desirable to investigate the conditions that have
contributed to this [2] and would even become compulsory should any legal matters
arise. Additionally, in the education domain, discovering why a student will drop out
is more valuable than just predicting it [3, 4] because, as in medicine, the treatment
depends on the probable cause. Similarly, auditing the behavior of machine learning bot
detectors in social media is valuable in order to improve the models for new kinds of
bots [5, 6].

Explanations may be expressed in many forms. For classification problems, specif-
ically, feature importance is widely used [7, 8], and demonstrates the global impact of
single features in the model predictions. A wide variety of different methods with dif-
ferent feature importance representations have been proposed for this purpose [9–11].
Despite these advances, there is still a lack of understanding as to how these methods
are related and whether one method is preferable over another [12].

In applied research it is often necessary to track feature importance over time, across
models or even across studies. Therefore, a method that enables the global feature con-
tribution to be represented by a single metric is more suitable than multiple metrics or
graphical representation, otherwise interpretability may be challenging to understand
when handling several features in several models.

A standard single metric of feature importance is the coefficients of additive models
such as linear and logistic regressions. This coefficient represents the weight of each
feature in the additive function, which describes the relationship among features and
outcome.However, for generalized linearmodels (GLM),which involve transformations
of this linear predictor into other discrete outcomes, such as logistic regressions, the
coefficient interpretability is not straightforward. Moreover, the coefficients are highly
sensitive to unobserved heterogeneity [13] and data scale [14].

To circumvent these limitations, marginal effects (MEs) have long been proposed
[14] in the traditional statistical literature. Marginal effects use the prediction function
to calculate the differences in probabilities of the outcome when the features partially
change fromone specified value to another.However,MEs fail to isolate the feature effect
when data are correlated [15]. This problem arises when the computation of the feature
effect uses conditional distribution. Thus, since correlated features move in tandem, it
is unable to distinguish which feature value changes influence the model probabilities.

For black-box models however, the permutation feature importance (PFI) derived
from tree-based algorithms is a standard single metric used to report feature contribution
in classification problems. However, this kind of metric is linked to model error, which
cannot be a metric of interest for analysts [15]. Furthermore, it does not report the
direction of the feature effect, which may be critical for actionable research. Recently,
SHapley Additive exPlanations (SHAP) [12] have been pointed out as the most common
explainability technique in organizations [1]. This technique uses game theory (Shapley
Values) to measure the contribution of each data point to each feature value. Thus, it can
deliver explanations in fine grain, and by means of the average, report the global feature
contributions, including their direction. Unfortunately, calculating the exact Shapley
value is computationally expensive [15], and several approximations have been proposed
[16].
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Moreover, both PFI and SHAP are permutation-based techniques, and so, they are
able to randomly sample from the marginal distribution considering unrealistic data
points that are not present on training data. Therefore, they extrapolate in areas where
the model was trained with either little or no training data, which may cause misleading
explanations [17].

Recent advances in the interpretable machine learning field, such as accumulated
local effects (ALE) plots, have put forward relevant contributions in this direction. They
have shed light on detecting a more reliable feature effect with low computational cost
when features are correlated. However, ALEs have only been used to visualize the feature
effects across different values by plots, which are not visually friendly when the analyst
compares the feature importance across multiple models.

Thus, this paper proposes new metrics of feature importance as a valuable option
when compared to those already in existence. They allow direct interpretation in the
probability scale, are more realistic when dealing with correlated data and are modeled
in a model-agnostic framework. Although these metrics may be extrapolated for any
class of supervised models, in this paper they are focused only on binary classification.
Experiments use open-access data from the UCI Archive to introduce differences among
provided metrics for logistic regression coefficients and random forest permutation fea-
ture importance. Lastly, real-world data are used to demonstrate how theymay be helpful
in a practical problem.

The remainder of this paper is organized as follows: Sect. 2 provides a background
of the theory related to this work. Section 3 introduces and explains the proposed met-
rics. Section 4 presents the experiments, results, and interpretation, and lastly, Sect. 5
summarizes the main findings, future work, limitations, and conclusions.

2 Background

There are several goals for explaining prediction models. In this paper, the main goal of
this paper is to support applied research providing single metrics that, in a more realistic
scenario, are able to report the overall contribution of model features. Hence, this section
defines feature importance, and reports the main existing metrics and methods for this
goal, which are directly related to this work.

2.1 Feature Importance

The most common explanation for the classification model is feature importance. Also
known as the feature-level interpretation or saliency method, the method is the most
well-studied explainability technique. It explains the decision of an algorithm by assign-
ing values that reflect the importance of input components in their contribution to the
decisions. Regardless of the mechanism to calculate it, its common meaning is related
to the individual contribution of the corresponding feature for a particular classifier [8].

This individual contribution may be derived from the global perspective, where the
feature importance is related to the whole model, and from the local perspective, where
the importance is derived for a specific data point [18]. Moreover, it may be internal to
the model (intrinsically) as the coefficients of linear models, or by applying methods
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that analyze the model after training (post hoc). Another criterion to classify these
methods is related to their generalizability, whether they are model-specific or model-
agnostic. While every intrinsic method is specific, all model-agnostic work is in a post
hoc framework [15].

2.2 Marginal Effects

Marginal effects are a general concept and have different meanings depending on the
discipline. This Subsection defines it according to econometrics, as the “additional”
effect. On the other hand, in Subsect. 2.3, theword “marginal” is related to the probability
distribution of a feature as well.

Given a features set X = (x1, x2), and the predicted function y
∧ = f

∧

(X ), the marginal
effects (ME) with respect to x1 at a specific value corresponds to the changes in the
outcome y

∧

, given that x1 changes in one unit. In other words, it is the first derivative of
f
∧

(X )with respect to a x1 at a specified value of the input space. However, if x1 is discrete
or binary, the computation is more straightforward, and the finite difference is applied,
rather than the derivative [4].

For linear and additive models, MEs are constant across the feature values and are
exactly the sameas the regression estimated slopes (coefficients) [14].However, forGLM
models MEs take different values across feature distribution. For a logistic regression
model, MEs reflects the logit shape, and are small when the probability is close to 0 or 1
and relatively large when close to 0.5 [18]. Thus, to summarize theMEs of x1 the average
of all MEs (AMEs) is commonly used [14]. Moreover, there are other alternatives that
may be more suitable depending on the researcher’s questions.

Summary Metrics of ME
AverageMarginal Effects (AMEs) are howmuch the outcome y changes on averagewhen
x1 varies in small changes. Thus, the derivative is computed for every small change on x1
for every data point and averaged. In practice, the numerical derivative is implemented
across the observed values of x1. A step (h) is defined for continuous features, and the
MEs become close to their theoretical value on the limit, as h tends to 0. The Equations
below demonstrate this beyond the simplified computation of AMEs.

ME = f
∧

(x) = lim
h→0

(
f (x + h) − f (x)

h

)

(1)

AMEs = 1

n

n∑

i=1

MEi

Marginal Effect at the Mean (MEM) is simply the computation of the MEs around
the mean of the feature distribution. In practice, MEM is close to the AME if f

∧

(x) is not
too noisy and more feasible to compute, since evaluating the derivatives at the means is
easier than taking the mean of each derivative [19].

Marginal Effect at the Representative Value (MER) is a simplification of MEM
calculation for a value that could be an interesting operation point for the research
domain. Themarginal effect is calculated for each variable at a particular combination of
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X values. Thus,MER provides ameans to understand and communicate model estimates
at theoretically important combinations of feature values [20].

These metrics were essential to shed light on those proposed in this paper since they
are based on solid statistical theory [14]. In addition to XAI advances, it is possible to
report a less-biased feature effect which could play an important role for ML applied
researchers.

2.3 Marginal Local Effects

The concept of local effects was brought in [21] and is a fundamental part of their
accumulated local effects (ALEs) plots. ALE plots were presented as an alternative for
visualizing the effects of features in black-box supervised learning models instead of
partial dependence plots (PDPs).

The PDPs, introduced by Friedman [22], are widely used to visualize the influence
of features in supervisedMLmodels, and have even been considered a causal interpreter
for black-box models [23]. For a prediction function y

∧ = f
∧

(X ), where y
∧

is a scalar
response variable and X = (x1, x2), PDPs illustrate the relationship between x1 and the
outcome, marginalizing f

∧

(X ) over the distribution of x2. Hence, the PDPs function at a
particular value of x1 represent the average prediction from f

∧

(X ) if all data points take
that value for x1. This process takes into account unlikely combinations of X, building
unrealistic plots when data are dependent.

As with MEs, ALEs use the conditional instead of marginal distribution. Thus, to
overcome the intrinsic problems of MEs, as mentioned in Subsect. 2.2, ALEs use the
averaged differences in f

∧

(X ) across intervals of the training data (local effect). This
hack allows the extraction of isolated effects of features within the intervals. Lastly,
it accumulates this averaged local effect and center subtracting the mean using the
equations below.

(2)

(3)

where k is the interval of data and nj(k) is the neighborhood. Hence, the ALE method
calculates the differences in predictions, whereby the features of interest are replaced
by grid values of z. The difference in prediction is the effect that features have for an
individual instance in a specific interval. The sum on the right in (2) adds up the effects
of all instances, which is divided by the number of instances in the interval k to produce
the average. Finally, the ALE is vertically centered (3) in the sense that the mean ALEs
of xj and xl on are both zero.

Figure 1 presents a better insight into the computation of the local effect for the
function f

∧

(x1, x2). The feature range of x1 was subdivided into k bins with roughly the
same number of points indexed by N (k). Focusing on bin N (4), for each point falling
into this bin, f

∧

(x1, x2) have their x1 held by the left and right endpoints of the interval z3
and z4. Next, the differences of the predictions of these points were averaged by dividing
their sum by the number of points in N (4). The same was carried out for all intervals
and summed up. Finally, the expectation over p(x1) was subtracted.
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Fig. 1. Illustration of the ALE estimation. Excerpt from [21]

2.4 Summary of Metrics for Explainability

Marginal effects have been discussed in traditional statistical literature as an alterna-
tive for the coefficients of the GLM models due to their direct interpretability on the
probability scale. In addition, they are less sensitive to the differences of data scale
and unobserved heterogeneity than coefficients [10]. Summary metrics of MEs use the
conditional distribution and are not robust against correlated data.

In the field of explainable machine learning field, PDPs have been widely used to
report the feature effect. However, they extrapolated their results when using the density
function and took into account an unreliable combination of data in their computation.
ALE plots recently brought the new concept of local MEs and overcame both the afore-
mentioned problems. Thus, this paper claims that the ALEs theory [21] is a good starting
point together with the existing traditional metrics of MEs [14] to propose new global
features importance which is able to fill the gap of robustness regarding the size and
direction of feature effects on a binary classification model.

3 Proposed Metrics

This section proposes four new metrics that are suitable for applied research when
comparing the feature effects across multiple models. These metrics are based on the
ME and the shape of ALE plots that may be used to report the feature contribution on
binary classification problems. Three of them possess explainability in terms of size and
direction of the feature effect, while one accounts only for the contribution amount.

3.1 Average Uncentered ALE (AUA)

Average is a natural metric to summarize a distribution (first-order momentum) and
leverages great insights regarding the size and directions of the feature mean effects.

(4)

This is close to the MEs for linear models and AMEs for GLMs since it uses the average
conditional distribution of the observed training data. However, it accounts for each local
effect and may be somewhat different for noisy models.
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3.2 Uncentered ALE at a Specific Value (UAS)

The UAS is an arbitrary choice of a specific value to calculate the uncentered ALE. In
practice, it requires splitting the data into k intervals and calculating the uncentered ALE
with (3) up to the interval where the choice values fall. This metric may be helpful when
the analyst has sufficient domain knowledge or is verifying hypotheses.

(5)

3.3 Maximum Uncentered ALE (MUA)

This metric is more actionable and consists of extracting the maximum change in pre-
dicting the outcome for the feature xi. As the maximum may be positive or negative
related to the outcome, it requires a previous absolute comparison in order to achieve
the highest value.

(6)

3.4 ALE Absolute Average (AABSA)

This metric is a non-directional metric and highlights the overall feature importance.
It measures, on average, how far the prediction changes away from the ALE average.
Unlike the others, the centered ALE is considered, which has a mean zero.

(7)

3.5 Summary of the Novelty of the Proposal

In order to clarify the novelty and issues addressed by the proposal, Table 1 summarizes
themain differences of each proposedmetric and of those that already exist. In particular,
the β- coefficients of logistic regression (LR) and permutation feature importance (PFI)
from tree-based algorithms were considered, both widely used in the machine learning
field as a global metrics and reported by a single parameter.

4 Experiments

To introduce the new metrics, two experiments were conducted1. The goal of the exper-
iments was two-fold. First, to compare the proposed metrics in this paper with intrinsic
model metrics. More specifically, it considered the widespread β-coefficients and the
permutation feature importance derived from LR and random forest (RF), respectively.

1 The implementation code can be found in this repository: https://github.com/rogerioluizsi/sum
mary_ale.git.

https://github.com/rogerioluizsi/summary_ale.git
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Table 1. Differences among proposed methods and similar existing methods in the ML field

Metric Report Concern about

Size Direction Dependence data Report in probability
scale

Model-agnostic

AUA v v v v v

UAS v v v v v

MUA v v v v v

AABSA v v v v

β – LR v v

PFI v

Thus, it was possible to evaluate whether or not the metrics highlight the features in a
similar manner. An open-access breast cancer dataset was used. This dataset is available
ready for modeling binary classification and is a linearly separable problem with highly
correlated data [24].

Second, a dataset was used from theNational Brazilian Test for Secondary Education
(ENEM), and the School Census from the 2009–2019 period. The goal here was to
demonstrate how the proposed metrics may be helpful in a real-world problem. Thus,
a data mining solution was developed to explore which and how the most important
variables associated with school performance behave over the years. The report aimed
at yielding valuable and actionable results for decision-makers through a single feature
importance metric. These summary measures may enhance the analytical ability of the
researcher when comparing the feature effects across supervised models, whichever the
algorithm chooses to fit the data.

TheALIBI package [25],which has implemented theALEplots, supports the compu-
tation of themetrics proposed in this paper. Therefore, all themechanisms intrinsic to the
ALEs theory, such as the interval definition, numerical derivation, and the computation
of the local effects, follow the software implementation. In this paper, the performance
of the models was not reported since the goals were limited to analyzing the model
explicability.

4.1 Breast Cancer Data

The breast cancer data included benign and malignant cell samples from 369 patients,
212 with cancer, and 157 with fibrocystic breast masses. Each sample contained thirty
features, and LR and RF predicted the patient class in a 5-fold cross-validation setting
with random sampling stratified by the target class. Therefore, both algorithms were
applied for the same folds, and the mean was adopted as feature importance for each
metric.

Figure 2 shows the LR coefficients in red and the four proposed metrics. For the
metrics that illustrate the direction of the relationship, there is a high correlation and
close magnitude. However, there were some discrepancies. This could have been due
to highly paired correlated data (e.g. perimeter vs. radius), and so logistic regression
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arbitrarily chose one of these (e.g. radius) to highlight the coefficient [26]. Also, the
p-values were not checked in this experiment, and maybe some highlighted coefficients
were statistically insignificant. However, neither of these are of concern for our metrics.

Fig. 2. β-coefficients and the proposed metrics of LR model for the breast cancer data

Figure 3 illustrates the permutation feature importance from the RF and the proposed
metrics. The features set highlighted by all metrics is similar with a high correlation. In
addition, surprisingly, the AABSA is fairly close to the permutation feature importance.
Both are only positive and only account for the amount of feature contributions.However,
they are built differently. While AABSA metrics the average change from the expected
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ALEs mean (ALE 0), permutation is related to increasing the prediction error after
permuting a feature. Hence, it may be due to the simplicity of the classification task on
the cancer data [24].

Fig. 3. Feature importance and the proposed metrics of RF model for the breast cancer data

4.2 Brazilian Secondary Educational Data

The second part of the experiment demonstrates how single feature importance may be
helpful in practice. The data was taken from the 2009–2019 period of the largest test for
secondary education in Brazil. The dataset contained demographic and socioeconomic
information on students, and school characteristics over 32 features. The data included
more than ten million students and was preprocessed to the school grain. The school
was classified as good or bad in relation to the average scores achieved by their students
in the test. To highlight the model-agnostic framework, two tree-based classifiers (RF
and AdaBoost (AB)) were applied combined in a 10-fold cross-validation setting, and
the overall mean was adopted for each metric.

Thus, systematized temporal data mining evaluated how the main features related to
the performance of the school had behaved over the years. Due to space limitations, only
the Max Uncentered ALE - MUA was reported by three plots presenting the outputs, as
discussed below.

Figure 4 presents a box plot with the MUA for each feature. The clarity of colored
dots illustrates the evolutionary directions of the variable over the years. The income per
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Fig. 4. Feature importance (MUA) during the period (RF and AB means) (Color figure online)

capita of students is the feature with the highest importance during the whole period.
This is followed by parent’s education and the students’ race (brown students’ negative
effects). The importance of student computers seems to be a growing tendency over the
years.

Figure 5 separates a selected set of features to obtain a better understanding of their
behavior during the period. The computer lab has a higher positive slope, while faculty
jobs (the number of schools where teachers work) have a higher negative.

Lastly, in Fig. 6, temporality was disregarded, and the features were organized
for an overview of their importance in the following groups: non-actionable features
(race and gender), school features (infrastructure), student features (parent’s education
and income) and teacher features. In general, the group of features related to students
demonstrated more potential to improve the quality of schools than others. Additionally,
non-actionable features had a strong influence, both negative and positive.

5 Discussion and Conclusion

This paper has proposed newmodel-agnostic metrics of feature importance in an attempt
to circumvent the drawbacks and constraints of the existingmethods, such as the β- coef-
ficients of additive models and feature importance from tree-based algorithms, widely
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Fig. 5. Evolution of the feature importance (MUA) of a selected features set (RF and AB means)

Fig. 6. Feature importance (MUA) by groups during the period (RF and AB means)

used for this purpose. This paper has proposed other options with a number of advan-
tages, such as being agnostic to models, interpretable in the probability scale, and more
reliable under correlated data.

The accumulated local effects are the key trick for isolating themain effect of the vari-
able even in correlated data. The four proposedmetricswere validated in two experiments
that illustrated their suitability to actual data mining applications.

In the first experiment, breast cancer data were used to compare the proposedmetrics
with the coefficients of logistic regression and the permutation feature importance of
random forest. The results illustrated that the proposed metrics are robust when facing
correlated data and did not suffer the effects experienced by logistic regression (LR).
All the proposed metrics captured the desired aspects of the attributes and were highly
correlated. The AABSA proposed metric, which is directly comparable to the random
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forest (RF), since the permutation feature importance is only positive, captured very
similar attribute importance.

Nevertheless, the comparisons were limited, and more tests are required to evaluate
the metric behavior in other situations. For example, the LR coefficients are known to
be sensitive to unobserved heterogeneity. Hence, when features are added to the model
and improve the predictions, the remaining coefficients may change, even if this feature
is not correlated with others [13]. Despite the marginal effects (a key to the proposed
metrics) being more robust in this situation [26], there was no empirical evidence of this
in our context. Additionally, an empirical test of the robustness in a scenario of correlated
data compared to existing metrics is required since this paper only considered the theory
inherited from ALE plots. Thus, we intend to make more analyses on a large scale in
future work, including other XAI approaches.

It should be mentioned that this paper has not yet compared the proposed metrics
across algorithms, since the algorithms are able to use the input features in a totally dif-
ferent manner to achieve similar results, it was already known as the “Rashomon” effect
[27]. Thus, even though the metrics proposed here are model-agnostic, the comparisons
across different algorithms must be interpreted with caution, even on the same data.

In addition, despite the motivation to compare feature importance across models,
the results must be interpreted with care, and validation by domain experts is required.
For example, in the second experiment, the data set was scaled equally for each year,
and the set of variables was the same with the same values. Even after these careful
transformations, the comparisonmay be inappropriate, and a piece of domain knowledge
may help to reduce the risks of misinterpretation.

The main limitation of the proposed metrics would be the extrapolation of the local
effect out of the interval where it was computed. The local effect is averaged across the
conditional distribution and may only hold when the predictors X jointly fall within the
same bin. Thus, there may be a problem if bin widths are too small and the predictive
function is too noisy. Furthermore, local effects may be unreliable if the quantity of data
points into the underlying bin is very small on the training data. Although this paper has
used deciles to equally subdivide the feature distribution in order to minimize this risk,
together with cross-validation for more reliable results, caution must be always taken in
the interpretation with the validation of the domain expert.

References

1. Bhatt, U., Xiang, A., Sharma, S., et al.: Explainable machine learning in deployment. In:
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 648–
657. ACM, New York (2020)

2. Razavian, N., Blecker, S., Schmidt, A.M., et al.: Population-level prediction of type 2 diabetes
from claims data and analysis of risk factors. Big Data 3, 277–287 (2015). https://doi.org/10.
1089/big.2015.0020

3. Pellagatti, M., Masci, C., Ieva, F., Paganoni, A.M.: Generalized mixed-effects random forest:
a flexible approach to predict university student dropout. Stat. Anal. Data Min., 1–17 (2021).
https://doi.org/10.1002/sam.11505

4. Berens, J., Schneider, K., Görtz, S., et al.: Early Detection of Students at Risk-Predicting
Student Dropouts Using Administrative Student Data fromGermanUniversities andMachine
Learning Methods (2019)

5. Yang, K.C., Varol, O., Davis, C.A., et al.: Arming the public with artificial intelligence to
counter social bots. Hum. Behav. Emerg. Technol. 1, 48–61 (2019). https://doi.org/10.1002/
hbe2.115

https://doi.org/10.1089/big.2015.0020
https://doi.org/10.1002/sam.11505
https://doi.org/10.1002/hbe2.115


Interpreting Classification Models Using Feature Importance 497

6. Leite, M.A.G.L., Guelpeli, M.V.C., Santos, C.Q.: Um Modelo Baseado em Regras para a
Detecção de bots no Twitter, pp. 37–48 (2020). https://doi.org/10.5753/brasnam.2020.11161

7. Barredo Arrieta, A., Díaz-Rodríguez, N., del Ser, J., et al.: Explainable Artificial Intelligence
(XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion
58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

8. Saarela, M., Jauhiainen, S.: Comparison of feature importance measures as explanations for
classification models. SN Appl. Sci. 3(2), 1–12 (2021). https://doi.org/10.1007/s42452-021-
04148-9

9. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating
activation differences. In: 34th International Conference on Machine Learning, ICML 2017,
vol. 7, pp. 4844–4866 (2017)

10. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with
feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2013). https://doi.org/10.1007/s10
115-013-0679-x

11. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?” explaining the predictions of
any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 13-17-August, pp. 1135–1144 (2016). https://doi.org/10.1145/
2939672.2939778

12. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Pro-
ceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 4768–4777. Curran Associates Inc., Red Hook (2017)

13. Mood, C.: Logistic regression: uncovering unobserved heterogeneity, pp. 1–25 (2017)
14. Long, J.S., Long, J.S.: Regression Models for Categorical and Limited Dependent Variables.

Sage, New York (1997)
15. Molnar, C.: Interpretable Machine Learning (2019)
16. Bhatt, U., Ravikumar, P., Moura, J.M.F.: Towards aggregating weighted feature attributions

(2019)
17. Hooker, G., Mentch, L.: Please stop permuting features: an explanation and alternatives,

pp. 1–15 (2019)
18. Guidotti, R., Monreale, A., Ruggieri, S., et al.: A survey of methods for explaining black box

models. ACM Comput. Surv. 51 (2018). https://doi.org/10.1145/3236009
19. Bartus, T.: Estimation of marginal effects using margeff. Stata J. 5, 309–329 (2005). https://

doi.org/10.1177/1536867x0500500303
20. Leeper, T.J.: InterpretingRegressionResults usingAverageMarginal EffectswithR’smargins

(2021). https://cran.r-project.org/web/packages/margins/vignettes/TechnicalDetails.pdf32
21. Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised

learning models. J. R. Stat. Soc. Ser. B Stat. Methodol. 82, 1059–1086 (2020). https://doi.
org/10.1111/rssb.12377

22. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29,
1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

23. Zhao, Q., Hastie, T.: Causal interpretations of black-box models. J. Bus. Econ. Stat. 39,
272–281 (2021). https://doi.org/10.1080/07350015.2019.1624293

24. Dua,D., Graff, C.: UCIMachineLearningRepository.University ofCalifornia, Irvine, School
of Information and Computer Sciences (2017). http://archive.ics.uci.edu/ml

25. Klaise, J., Van Looveren, A., Vacanti, G., Coca, A.: Alibi explain: Algorithms for explaining
machine learning models. J. Mach. Learn. Res. 22(181), 1–7 (2021). http://jmlr.org/papers/
v22/21-0017.html

26. Mood, C.: Logistic regression: why we cannot do what we think we can do, and what we can
do about it. Eur. Sociol. Rev. 26, 67–82 (2010). https://doi.org/10.1093/esr/jcp006

27. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning
a variable’s importance by studying an entire class of prediction models simultaneously. J.
Mach. Learn. Res. 20, 1–81 (2019)

https://doi.org/10.5753/brasnam.2020.11161
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/s42452-021-04148-9
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/3236009
https://doi.org/10.1177/1536867x0500500303
https://cran.r-project.org/web/packages/margins/vignettes/TechnicalDetails.pdf32
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1080/07350015.2019.1624293
http://archive.ics.uci.edu/ml
http://jmlr.org/papers/v22/21-0017.html
https://doi.org/10.1093/esr/jcp006

	Interpreting Classification Models Using Feature Importance Based on Marginal Local Effects
	1 Introduction
	2 Background
	2.1 Feature Importance
	2.2 Marginal Effects
	2.3 Marginal Local Effects
	2.4 Summary of Metrics for Explainability

	3 Proposed Metrics
	3.1 Average Uncentered ALE (AUA)
	3.2 Uncentered ALE at a Specific Value (UAS)
	3.3 Maximum Uncentered ALE (MUA)
	3.4 ALE Absolute Average (AABSA)
	3.5 Summary of the Novelty of the Proposal

	4 Experiments
	4.1 Breast Cancer Data
	4.2 Brazilian Secondary Educational Data

	5 Discussion and Conclusion
	References


