
 
Pós-Graduação em Ciência da Computação 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“LIFT: A Legacy InFormation retrieval Tool” 

 

by 

 

Kellyton dos Santos Brito  
 

M.Sc. DISSERTATION 

 

 

 
 

 

 
       Universidade Federal de Pernambuco 

                posgraduacao@cin.ufpe.br 

            www.cin.ufpe.br/~posgraduacao 

 

 

     RECIFE, SEPTEMBER/2007 

 



 Universidade Federal de Pernambuco 

CENTRO DE INFORMÁTICA 

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 

 
 

 

 

 

 

 

 

 

 

 

 

 

Kellyton dos Santos Brito 

 

 

 

“LIFT: A Legacy InFormation retrieval Tool" 

 
 

 

 

 

 
 

 

 

                                          

 

 

 

                                         

 

 

                                      ORIENTADOR(A): Prof. Silvio Romero de Lemos Meira 

 

 

 

 

 

RECIFE, SETEMBRO/2007 

Este trabalho foi apresentado à Pós-Graduação em Ciência da 

Computação do Centro de Informática da Universidade Federal de 

Pernambuco como requisito parcial para obtenção do grau de Mestre em 

Ciência da Computação. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Brito, Kellyton dos Santos  

LIFT: A Legacy InFormation retrieval Tool / 
Kellyton dos Santos Brito.  –  Recife : O Autor, 2007.                                                                                                
      xiv, 97  folhas : il., fig.,tab. 
 
      Dissertação (mestrado) – Universidade Federal 
de Pernambuco. CIn.  Ciência da Computação, 2007. 

 
      Inclui bibliografia e apêndice. 
 
      1. Engenharia de software.  I. Título. 

 

      005.1            CDD (22.ed.)          MEI2008-052 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Let this book of the law be ever on your lips and 

in your thoughts day and night, so that you may keep with care everything in 

it; then a blessing will be on all your way, and you will do well. 

Have I not given you your orders? Take heart and 

be strong; have no fear and do not be troubled; for the Lord your God is with 

you wherever you go."(Joshua, 1,8-9) 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For God, my wonderful parents, Josélia and Brito, 

and my lovely sister, Kelly. 



v 

 

cknowledgments 

 

Often words cannot express our feelings, and this is one of these times. I would 

like to thank all the people that in some way contributed and helped me to 

accomplish this work. I know that I will do the mistake of not thanking all of 

you, so please accept my sincere apologies and be sure that I will always be 

grateful to all of you. 

Initially, I would like to thank God, who gave-me all I needed to complete 

this important step of my life, since spiritual and emotional support in the many 

lonely moments, even the good life quality provided in these 2 years that I am 

depending only of Him. 

Next, I would like to thank my family. My father Ildefonso Brito, who 

always does his best to give me more than he had. My mother Josélia Santos, 

who dedicated her life to give me the best education, and to Kelly Brito, who was 

a key person while I am far from my homeland. 

I would like to thank all professors and researchers from the Universidade 

Federal da Bahia (UFBA) and Fundação Bahiana de Cardiologia (FBC), specially 

Dr. Ana Regina Rocha and Ana Claudia Oliveira Garcia who introduced me in 

the research world. 

My advisor, Dr. Silvio Meira, for accepting me in his group, for showing 

me brilliant ideas using only a pen and a piece of paper, and for introducing me 

in the Reuse in Software Engineering (RiSE) group, which was very important 

in the guidance of this work, with discussions, suggestions and valuable 

feedback. The results of this dissertation could not be achieved without the 

A 



vi 

support of the RiSE. I would like to thank for all the RiSE members for the time 

they took to help to improve the quality of this work. 

The Recife Center for Advanced Studies and Systems (C.E.S.A.R), which 

provided a perfect infrastructure and environment, in addition to financial 

support, to this work. Moreover, the Pitang Software Factory provided a 

wonderful environment for the evaluation of this work, with a real industrial 

scenario and its infrastructure and staff, allowing the case study. 

Living away from home is a difficult task. In this period, I met several 

people who became important to my life. I will not try to list all of them, because 

I will do the mistake of not thanking all important people, but be sure that I will 

always be grateful to all of you. In special, I have to thank Mariana Donato and 

Leila Magalhães, who were key people in the most difficult moments in Recife. 

At the end, I would like to thank all of the people that have been filling my 

heart of good moments in life. 



vii 

 

esumo  
 

Atualmente, as empresas continuamente alteram suas práticas e seus 
processos a fim de permanecerem competitivas em seus negócios. Visto que os 
sistemas de informação não são mais tratados apenas como items adicionais, 
mas sim como parte do próprio negócio, eles devem acompanhar e dar suporte à 
dinâmica das empresas. Porém, a manutenção ou evolução dos sistemas ainda é 
um desafio, em especial quando se trata do entendimento dos sistemas legados, 
geralmente mal documentados. 

Nesse cenário, a engenharia reversa pode ser uma maneira de organizar o 
entendimento e a recuperação de conhecimento dos sistemas legados. Entrento, 
apesar da existencia de alguns processos, métodos e ferramentas para apoio às 
atividades de engenharia reversa, algumas tarefas ainda são difíceis de serem 
reproduzidas no contexto industrial. Dentre elas, pode-se destacar a pouca 
existência e uso de ferramentas que automatizem as atividades da engenharia 
reversa, além de pouca evidência empírica da sua utilidade. 

Portanto, este trabalho apresenta os requisitos, a arquitetura e a 
implementação de uma ferramenta de engenharia reversa. Os requisitos da 
ferramenta foram baseados em um amplo estudo sobre as áreas de reengenharia 
e engenharia reversa, cobrindo tanto experiências acadêmicas quanto 
industriais. Além disso, são apresentados e discutidos os resultados de um 
estudo de caso em que a ferramenta é aplicada em um projeto industrial, cujo 
objetivo foi a engenharia reversa de uma aplicação de 210KLOC, desenvolvida 
em NATURAL/ADABAS, de uma instituição financeira. 

 

Palavras Chave: Reengenharia, Engenharia Reversa, Entendimento de 
Sistemas, Sistemas Legados, Reuso de Conhecimento. 

R 



viii 

 

bstract  
 

Nowadays to remain competitive in their business the companies 
continually change their practices and processes. In addition, due to the fact 
that information systems are no longer an additional item but an important part 
of their business, they have to provide support to business dynamics. 
Nevertheless, the systems maintenance and evolution needed to attend this 
business dynamics is still a challenge. In special, one of most difficult task is to 
understand these legacy systems, which in general have no useful 
documentation. 

In this scenario, reverse engineering can be a way to organize the 
understanding and knowledge retrieval of legacy systems. Nevertheless, despite 
of the existence of some processes, methods and tools to help in reverse 
engineering and systems understanding, some activities are still difficult to 
replicate in an industrial context. In special, the existence of tools that automate 
reverse engineering is still limited, and there is little empirical evidence of its 
usefulness. 

Thus, this work presents the requirements, architecture and 
implementation of a reverse engineering tool. The requirements were based on 
extensive surveys on the reengineering and reverse engineering areas, covering 
academic and industrial studies. Finally, it discusses results of a case study that 

used the tool in an industrial context of reverse engineering a 210KLOC legacy 
system of a financial institution, developed with NATURAL/ADABAS 
technologies.  

Keywords: Reengineering, Reverse Engineering, System Understanding, 
Legacy Systems, Knowledge Reuse. 

 

A 



ix 

able of Contents  
 

Acknowledgments .................................................................................................... v 

Resumo........................................................................................................................ vii 

Abstract ...................................................................................................................... viii 

Table of Contents ..................................................................................................... ix 

List of Figures............................................................................................................ xi 

List of Tables ............................................................................................................. xii 

List of Acronyms .................................................................................................... xiii 

1. Introduction............................................................................................................ 1 

1.1. Motivation ........................................................................................................ 1 

1.2. Problem Statement............................................................................................ 2 

1.3. Overview of the Proposed Solution.................................................................. 2 

1.4. Out of Scope ..................................................................................................... 5 

1.5. Statement of the Contributions ......................................................................... 6 

1.6. Organization of the Dissertation....................................................................... 7 

2. Key Developments in the Field of Software Reengineering ................ 8 

2.1. The Taxonomy.................................................................................................. 9 

2.2. Reengineering Approaches............................................................................. 11 

2.2.1. Source-to-Source Translation ................................................................. 12 

2.2.2. Object recovery and specification .......................................................... 13 

2.2.3. Incremental approaches .......................................................................... 16 

2.2.4. Component-Based approaches ............................................................... 17 

2.3. New Research Trends..................................................................................... 20 

2.4. Key points of  Software Reengineering.......................................................... 22 

2.5. Chapter Summary........................................................................................... 23 

3. Reverse Engineering Tools: The State-of-the-Art and Practice ....... 25 

3.1. Reverse Engineering Tools............................................................................. 26 

3.2. Towards an Effective Software Reverse Engineering Tool ........................... 32 

3.3. Summary of the Study .................................................................................... 36 

3.4. Chapter Summary........................................................................................... 37 

T 



x 

4. LIFT: Legacy InFormation Retrieval Tool ................................................ 39 

4.1. Requirements .................................................................................................. 39 

4.2. Architecture and Implementation ................................................................... 42 

4.2.1. General Vision........................................................................................ 43 

4.2.2. Parser Component .................................................................................. 44 

4.2.3. Analyzer Component.............................................................................. 47 

4.2.4. Visualizer Component ............................................................................ 52 

4.2.5. Understanding Environment Component ............................................... 55 

4.2.6. Summary of Architecture and Implementation ...................................... 58 

4.2.7. Requirements Compliance...................................................................... 59 

4.3. LIFT Usage..................................................................................................... 60 

4.4. Chapter Summary........................................................................................... 63 

5. LIFT Evaluation ................................................................................................... 65 

5.1 LIFT Context .................................................................................................. 65 

5.2 Software Evaluation Techniques ................................................................ 67 

5.3 LIFT Evaluation ............................................................................................. 68 

5.3.1 The Definition ........................................................................................ 68 

5.3.2 The Planning........................................................................................... 69 

5.3.3 The Project used in the Case Study ........................................................ 73 

5.3.4 The Instrumentation................................................................................ 73 

5.3.5 The Operation ......................................................................................... 73 

5.3.6 The Analysis and Interpretation ............................................................. 74 

5.4 Lessons Learned ............................................................................................. 79 

5.5 Chapter Summary........................................................................................... 80 

6. Conclusions ........................................................................................................... 81 

6.1. Research Contributions .................................................................................. 81 

6.2. Related Work.................................................................................................. 82 

6.3. Future Work.................................................................................................... 82 

6.4. Academic Contributions ................................................................................. 84 

6.5. Concluding Remarks ...................................................................................... 84 

Appendix A. Questionnaire used in the Case Study.................................. 85 

References.................................................................................................................. 88 

 



xi 

ist of Figures  

 
 

Figure 1.1. The RiSE Framework for Software Reuse..................................................... 3 

Figure 1.2. Architecture of the proposed solution ............................................................ 4 

Figure 2.1. Software Life Cycle [Chikofsky and Cross 1990] ....................................... 11 

Figure 2.2. Timeline of Reengineering Approaches [Garcia 2005] ............................... 20 

Figure 3.1 Cognitive Design Elements [Storey 1999].................................................... 29 

Figure 3.2. Timeline of Reverse Engineering tools........................................................ 33 

Figure 4.1. LIFT Architecture ........................................................................................ 43 

Figure 4.2. Main tables of Parser module....................................................................... 45 

Figure 4.3. Example of a NATURAL source code ........................................................ 45 

Figure 4.4. Source code stored in the database by the parse module ............................. 46 

Figure 4.5. Database structure used by the pre-processing ............................................ 46 

Figure 4.6. LIFT Normal visualization........................................................................... 53 

Figure 4.7. LIFT Path Visualization............................................................................... 54 

Figure 4.8. LIFT Cluster Visualization .......................................................................... 55 

Figure 4.9. LIFT main screen ......................................................................................... 56 

Figure 4.10. LIFT source code visualization.................................................................. 57 

Figure 4.11. Lift Parser................................................................................................... 61 

Figure 4.12. Menu commands to pre-processing and generate graph functions ............ 62 

Figure 4.13. Popup menu options to generate new graphs............................................. 62 

Figure 4.14. LIFT view and requirement description..................................................... 63 

Figure 5.1. Size of systems which Pitang performed reverse engineering..................... 66 

 

L 



xii 

 

ist of Tables  

 
 

Table 3.1. Relation between the works on Reverse Engineering Tools and the 

requirements. .................................................................................................................. 37 

Table 5.1. Projects Characteristics ................................................................................. 75 

Table 5.2. LIFT execution times .................................................................................... 77 

 

L 



xiii 

 

ist of Acronyms  

 
 

ADT - Abstract Data Type ..................................................................................14 

AOSD - Aspect-Oriented Software Development................................................20 

API - Application Programming Interface ...........................................................18 

AQL - Architectural Query Language..................................................................22 

CASE - Computer-Aided Software Engineering .................................................13 

C.E.S.A.R - Recife Center for Advanced Studies and Systems ...........................04 

CBD - Component-Based Development ..............................................................17 

DSE - Data Store Entity .......................................................................................13 

FR - Functional Requirement ...............................................................................27 

GUI - Graphical User Interface ............................................................................22 

KLOC - Kilo Lines of Code .................................................................................28 

LOC - Lines of Code ............................................................................................32 

NDSE - Non-Data Store Entity ............................................................................13 

NFR - Non-Functional requirement .....................................................................27 

OO - Object Oriented paradigm ...........................................................................13 

RiSE - Reuse in Software Engineering.................................................................03 

ROOAM - Reverse Objected-Oriented Application Model .................................14 

STM - Short Term Memory..................................................................................30 

UI - User Interface................................................................................................21 

L 



xiv 

WAP - Wireless Application Protocol..................................................................22 

WWW - World Wide Web ...................................................................................22 

 

 



 

Introduction  

 

1.1. Motivation 

Companies stand at a crossroads of competitive survival, depending on 

information systems to keep their business. In general, since these systems have 

been built and maintained in the last decades, they are mature, stable, and with 

few bugs and defects, with considerable information about the business, and are 

called legacy systems [Connall 1993, Ulrich 1994]. 

 On the other hand, business dynamics demand constant changes in 

legacy systems, which causes quality loss and difficult maintenance [Lehman 

1985], making software maintenance to be the most expensive software activity, 

responsible many cases for more than 90% of software budgets [Lientz 1978, 

Standish 1984, Erlikh 2000]. In this context, companies have some alternatives: 

(i) to replace the applications with other software packages, losing considerable 

knowledge associated with the application and needing change in the business 

processes to adapt to the new applications; (ii) to rebuild the applications from 

scratch, still losing the knowledge embedded in the application; or (iii) to 

perform application reengineering, reusing the knowledge embedded in the 

systems. 

 Reengineering legacy systems is a choice that prioritizes knowledge 

reuse, instead of building everything from scratch again. It is composed of two 

main tasks: Reverse Engineering, which is responsible for system understanding 

and knowledge retrieval; and Forward Engineering, which is the reconstruction 

phase. The literature [Lehman 1985, Jacobson 1997, Bianchi 2000] discusses 

several processes and methods to support reengineering tasks, as well as 

specific tools [Paul 1992, Müller 1993, Storey 1995, Finnigan 1997, Singer 1997, 

Zayour 2000, Favre 2001, Lanza 2003a, Lanza 2003b, Schäfer 2006] to 

automate it. However, even with these advances, some activities are still difficult 

1 



Chapter 1 – Introduction 

 

2 

to replicate in industrial contexts, especially the first step (reverse engineering), 

where a huge amount of information is spread, sometimes with few or no 

documentation at all. Thus, the research of methods, processes and tools to 

support these activities are still essential. In special, the adoption of tools can 

automate reverse engineering tasks and produce good results with a little 

organizational impact. 

However, even with the tools available today, some flaws still exist, such 

as: (i) the recovery of the entire system (interface, design and database), and to 

trace the requirements from interface to database access, instead of only 

architectural, database or user interface recovery; (ii) the recovery of system 

functionality, i.e., what the system does, instead of recovering only the 

architecture, that shows how the system works; (iii) the difficult of managing 

the huge amount of data present in the systems; (iv) the high dependency of the 

expert’s knowledge; and (v), although existing tools address a proper set of 

requirements, such as search [Paul 1992], cognitive [Zayour 2000] or 

visualization capabilities [Schäfer 2006], they normally fail to address all the 

requirements together. 

1.2. Problem Statement 

Motivated by the questions presented in the previous Section, the goal of 

the work described in this dissertation can be stated as: 

This work defines the requirements, designs and implements a 

tool for reverse engineering, aiming to aid system engineers to 

retrieval knowledge from legacy systems, as well as to increase 

their productivity in reverse engineering and system 

understanding tasks. Moreover, the tool is based on the-state-of-

the-art and practice in the area, and its foundations and elements 

are discussed in details. 

1.3. Overview of the Proposed Solution 

In order to achieve the goal of this work, stated in the previous Section, a study 

on reengineering approaches analyzing their flaws and future trends was 

performed. In addition, reverse engineering tools was analyzed, along with its 

requirements, strong and weak points. Thus, we defined the tool requirements 



Chapter 1 – Introduction 

 

3 

and architecture, and built a first version of LIFT, which was evaluated and is 

being used in an industrial project of reverse engineering. This Section describes 

the context of this work and outlines the architecture of the proposed tool. 

Context 

This work is a part of a broader reuse initiative promoted by the Reuse in 

Software Engineering research group1 (RiSE) [Almeida et al., 2004]. RiSE’s goal 

is to develop a robust framework for software reuse in order to enable the 

adoption of a reuse program. The proposed framework has two layers, as shows 

in Figure 1.1, adapted from [Almeida 2004]. The first layer (on the left side) is 

formed by best practices related to software reuse. Non-technical aspects, such 

as education, training, incentives, program to introduce reuse, and 

organizational management are considered. This layer constitutes a 

fundamental step before the introduction of the framework in organizations. 

The second layer (on the right side), is formed by important technical aspects 

related to software reuse, such as processes, environment, and tools. 

 

Figure 1.1. The RiSE Framework for Software Reuse  

In the RiSE framework, this work is classified as one of the effort in 

direction to a Software Reuse Environment. In addition, as can be seen in 

Figure 1.1, the RiSE project addresses reuse aspects not included in the scope of 

this dissertation, such as software reuse processes [Almeida 2007], component 

managers [Burégio 2006] and component certification [Alvaro et al., 2006], and 

other tools proposed by the project, including domain analysis tools [Lisboa et 

                                                 
1
 The RiSE project in the web: http://www.rise.com.br 



Chapter 1 – Introduction 

 

4 

al., 2007] and component search engines [Garcia et al., 2006, Mascena 2006, 

Vanderlei et al., 2007] . 

These efforts are coordinated and will be integrated in a full-fledged 

enterprise scale reuse solution. The role of the LIFT tool on the RiSE project is 

to provide a tool for legacy knowledge reuse, which is included in the software 

reuse environment. 

Moreover, this work was conduced in a partnership with industry, 

represented by the Recife Center for Advanced Studies and Systems2 

(C.E.S.A.R) and Pitang Software Factory3. C.E.S.A.R provided all infra-structure 

and financial support to the development of this work, from surveys to 

implementation, and Pitang contributed with the environment and real projects 

to the case study. In addition, its staff and organizational experiences helped in 

several discussions and definitions. 

Architecture Outline 

The LIFT tool consists of a set of core components and integration 

interfaces that work in conjunction to provide the required functionalities. 

Figure 1.2 shows an overview of the tool’s architecture. 

 

Figure 1.2. Architecture of the proposed solution 

The Tool architecture was defined with a special focus on scalability, in 

order to allow its usage in industry scenarios of large systems. In addition, the 

tool should be capable of being used with several input technologies. Thus, it is 

based on parser and storage of the code in database systems, in a high 

                                                 
2
 http://www.cesar.org.br 

3
 http://www.pitang.com 



Chapter 1 – Introduction 

 

5 

abstraction level. Moreover, the tool has four main components: parser, 

analyzer, visualizer and understanding environment. 

In general lines, the parser component is responsible to perform the 

parsing and to insert its code in database. The analyzer is responsible to analyze 

the database and generate useful information for the user. The visualizer shows 

the user this information, and provides software exploration and visualization 

capabilities. Finally, the understanding environment integrates the other 

components, providing the user interface for the user. 

1.4. Out of Scope 

As the proposed tool is part of a broader context, a set of related aspects 

will be left out of its scope. In addition, recognized requirements are not a full 

and closed set of functionalities that can be addressed by a reverse engineering 

tool, which depends on the context where it is applied. However, we believe that 

the identified requirements are the basis for the design of an effective reverse 

engineering tool. 

Thus, the following issues are not directly addressed by this work: 

Process. Software process is a set of activities that leads to the 

production of a software production [Sommerville 2000], and both academy 

and industry agree that processes are fundamental to software engineering. 

However, the tool presented in this work was designed to be used in the support 

of reengineering or reverse engineering processes, like the one in the case study, 

but the definition and evaluation of the process is not addressed in this work. 

Forward Engineering. By definition, reengineering is composed by a 

reverse engineering phase followed by a delta, which is the reorganization or 

any alteration, and forward engineering [Chikofsky and Cross 1990, 

Sommerville 2000, Pressman 2001]. Nevertheless, the focus of this work is 

reverse engineering and system understanding; thus, forward engineering 

issues are not addressed. 

Estimation. Software estimation is an important issue in the economics 

of software projects, in order to allow the planning, resources allocation and 

good execution of software projects. It can be seen as a sub-area of software 

engineering [Sommerville 2000]. Thus, due to its coverage, with several 



Chapter 1 – Introduction 

 

6 

methods and approaches, in addition to non technical factors, reverse 

engineering estimation is not addressed in this work. 

Quality, Validation and Tests. The tool aids in reverse engineering 

and system understanding tasks. However, since there is no agreed-upon 

definition or test of understanding [Clayton et al., 1998], the creation of 

validation and tests plans for system understanding can be seen as a new area or 

discipline of reengineering, which is not addressed in this work. 

1.5. Statement of the Contributions 

As a result of the work presented in this work, the following contributions 

may be enumerated: 

• The extension of a study on the key developments in the field of 

software reengineering, in an attempt to analyze this research area 

and identify the next trends to follow. 

• A survey based on the state-of-the-art and practice of reverse 

engineering tools in order to understand and identify the weak and 

strong points of the existing tools. 

• The definition of requirements, architecture and implementation of 

an effective reverse engineering tool, with the use and integration of 

new methods, such as cluster and pattern detection, minimal paths 

calculation and views usage. 

• The definition, planning, operation, analysis, interpretation and 

packaging of a case study which describes the use of the proposed 

tool in an industrial project. 

Besides the final contributions listed above, some intermediate results of 

this work have been reported in the literature: 

• Brito, K. S.; Garcia, V. C.; Lucrédio, D.;  A.; Almeida, E. S.; Meira, S. 

R. L. LIFT: Reusing Knowledge from Legacy Systems, In the 

Brazilian Symposium on Software Components, Architectures and 

Reuse (SBCARS), Campinas, São Paulo, Brazil, 2007. 

• Brito, K. S.; Garcia, V. C.; Almeida, E. S.; Meira, S. R. L. A Tool for 

Knowledge Extraction from Source Code, 21st Brazilian 



Chapter 1 – Introduction 

 

7 

Symposium on Software Engineering, Tools Session, João Pessoa, 

Paraíba, Brazil, 2007. 

 

1.6. Organization of the Dissertation 

The remainder of this dissertation is organized as follows. 

Chapter 2 presents an extension of a survey about the origins of 

reengineering concepts and ideas, processes and methods, and presents future 

directions for research and developments in the area. 

Chapter 3 surveys the state-of-the-art and practice on the reverse 

engineering tools field, discussing their origins, fundamentals, strong and weak 

points and main requirements, trying to establish some relations between them, 

in order to define a base for the tool defined in this work. 

Chapter 4 describes the LIFT tool: its requirements, architecture, 

implementation and usage of the tool. 

Chapter 5 presents the LIFT evaluation, with it context, definition, 

planning, operation, analysis, interpretation and packing of the case study that 

evaluated the viability of the tool. 

Chapter 6 summarizes the contributions of this work, presents the related 

work, and directions for future work. 

Appendix A presents the questionnaire used in the experimental study. 



 

Key Developments in 
the Field of Software 
Reengineering 

 

“The history of software development began in the UK in 1948 [Ezran et 

al., 2002]. In that year, the Manchester “Baby” was the first machine to 

demonstrate the execution of stored-program instructions. Since that time, 

there has been a continuous stream of innovations that have pushed forward 

the frontiers of techniques to improve software development processes. From 

subroutines in the 1960s through to modules in the 1970s, objects in 1980s, and 

components in the 1990s [Clements and Northrop 2001], software 

development has been a story of a continuously ascending spiral of increasing 

capability and economy battled by increasing complexity. This necessity is a 

consequence of software projects becoming more complex and uncontrollable, 

along with problems involving schedules, costs, and failures to meet the 

requirements defined by the customers, among others [Broy 2006]”. [Almeida 

2007] 

Even with these advances, since the old systems many times are built and 

maintained in the last decades, they are mature, stable, with few bugs and 

defects, having considerable information about the business. On the other hand, 

the business dynamics demands constant changes in these systems, which 

causes quality loss and difficult maintenance [Lehman and Belady 1985], 

making software maintenance to be the most expensive software activity, 

responsible for more than 90% of software budgets [Lientz et al., 1978, Standish 

1984, Erlikh 2000]. Thus, this kind of software is called legacy software or 

legacy systems, which can be defined as follow: 

2 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

9 

“Legacy software is critical software that cannot be modified efficiently. 

In other words, it is software perceived by the business to be critical to its 

operations, and yet difficult to modify without incurring great expense (in 

terms of time, skill, etc). Legacy software is often described as being any or all 

of the following: large, old, heavily modified, difficult to maintain, old-

fashioned.”[Brooke and Ramage 2001] 

Thus, due to the difficulty in maintaining legacy systems, companies have 

some alternatives: (i) to replace the applications by other software packages, 

losing the entire knowledge associated with the application and needing 

changes in the business processes to adapt to new applications; (ii) to rebuild 

the applications from scratch, often still losing the knowledge embedded in the 

application; or (iii) to perform application reengineering, reusing the 

knowledge embedded in the systems. 

In this context, reengineering legacy systems is a choice that prioritizes 

knowledge reuse, instead of building everything from scratch again. Therefore, 

reusing the embedded knowledge offers the opportunity to keep the same 

quality of original systems, as well as decrease the maintenance costs. 

Nevertheless, the organization scenario, costs and risks to perform the 

reengineering must be addressed, in order to obtain its benefits [Brooke and 

Ramage 2001]. 

In this way, this chapter surveys the origins of reengineering concepts and 

ideas, processes and methods, and future directions for research and 

developments in the area.  

2.1. The Taxonomy 

In 1990, Chikofsky & Cross [Chikofsky and Cross 1990] realized that 

various terms for technologies to analyze and understand software systems had 

been frequently misused or applied in conflicting ways, and defined and related 

six terms already used in the practice, that became the default taxonomy for 

reengineering. The terms and definitions are: 

• Reverse Engineering is the process of analyzing a subject system 

to identify the system’s components and their interrelationships, 

and to create a representation of the system in another form or at a 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

10 

higher level of abstraction. There are many subareas of reverse 

engineering. Two subareas that are widely referred to it are 

redocumentation and design recovery. 

• Redocumentation is the creation or revision of a semantically 

equivalent representation within the same relative abstraction level. 

The resulting forms of representation are usually considered 

alternative views (for example, dataflow, data structure, and control 

flow) intended for a human audience. 

• Design Recovery is a subset of reverse engineering in which 

domain knowledge, external information, and deduction or fuzzy 

reasoning are added to the observations of the subject system to 

identify meaningful higher level abstractions beyond those 

obtained directly by examining the system itself. 

• Restructuring is the transformation from one representation 

form to another at the same relative abstraction level, while 

preserving the subject system's external behavior (functionality and 

semantics). 

• Forward Engineering is the traditional process of moving from 

high-level abstractions and logical, implementation-independent 

designs to the physical implementation of a system. Forward 

engineering follows a sequence of going from requirements to 

designing its implementation.  

• Reengineering is the examination and alteration of a subject 

system to reconstitute it in a new form and the subsequent 

implementation of the new form.  

The relations among these terms are shown in Figure 2.1 [Chikofsky and 

Cross 1990].  The key terms were defined based on three development life-cycle 

stages, with clearly abstraction levels: Requirements, which is the specification 

of the problem being solved, including objectives, constraints, and business 

rules; Design, which is the specification of the solution; and Implementation, 

which is the tasks of coding, testing, and delivery of the system.  



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

11 

According to the term definitions and relations, Forward Engineering 

flows from high level abstractions to low level abstractions and Reverse 

Engineering flows the opposite way, from lower level abstractions to higher 

abstractions, using Restructuring and Redocumentation, and aiming 

understand the system. Reengineering usually is composed by some kind of 

Reverse Engineering followed by Forward Engineering or Restructuring, and 

may include modifications with respect to new requirements not met by the 

original system. 

 

Figure 2.1. Software Life Cycle [Chikofsky and Cross 1990] 

2.2. Reengineering Approaches 

Since the initial research on software maintenance and reengineering 

[Lientz 1978] several approaches were proposed trying to automate or aid 

software engineering in tasks of reverse engineering. Garcia et al. [Garcia et al., 

2004, Garcia 2005] performed an extensive study of these approaches, 

identifying four lines: (i) Source-to-Source Translation, (ii) Object Recovery 

Specification, (iii) Incremental Approaches and (iv) Component Based 

Approaches. These approaches are described next. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

12 

2.2.1. Source-to-Source Translation 

Essentially, all program translators (both source-to-source translators 

and compilers) operate via transliteration and refinement. The source program 

is first transliterated into the target language on a statement-by-statement basis. 

Various refinements are then applied in order to improve the quality of the 

output. Although acceptable in many situations, this approach is fundamentally 

limited to reengineering due to the low quality of the produced output. 

Specially, it tends to be insufficiently sensitive to global features of the source 

program and too sensitive to irrelevant local details. 

The Lisp-to-Fortran translator proposed by Boyle [Boyle and 

Muralidharan 1984] is based on the transformational approach. The translator 

handles an applicative subset of Lisp which does not include hard-to-translate 

features, such as the ability to create and execute new Lisp code. Readability is 

not a goal of the translation. Rather, readability of the output is abandoned in 

favor of producing reasonably efficient Fortran code. As discussed in the work 

[Boyle and Muralidharan 1984], this translator is perhaps best thought of as a 

Lisp to Fortran compiler rather than a source-to-source translator. The 

transformation process is controlled by dividing it into a number of phases. 

Each phase applies a transformation selected from a small set. The 

transformations within each set are chosen in a way that conflicts among 

transformations will not arise. 

Waters [Waters 1988] presents an alternative translation paradigm - 

abstraction and reimplementation. In this paradigm, the source program is first 

analyzed in order to obtain a programming-language-independent 

understanding of the computation performed by the program as a whole. Next, 

the program is re-implemented in the target language based on this 

understanding. In contrast to the standard translation approach of 

transliteration and refinement, translation via analysis and reimplementation 

utilizes an in-depth understanding, which makes it possible for the translator to 

create target code without being constrained by irrelevant details of the source 

program. 

The main advantage of source-to-source translation is that it is faster 

than traditional approaches, and it requires less expensive manual effort. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

13 

However, it is clear that there are still some significant limitations in the quality 

of the output that is produced by typical translators. This can be clearly seen in 

source-to-source translation, where human intervention is typically required in 

order to produce acceptable output. 

2.2.2. Object recovery and specification 

The new technology of the late 1980's and early 1990's was the object-

oriented. The Object-Oriented paradigm (OO) offers some desirable 

characteristics, which in some sense significantly helps improving software 

reuse. This was the predominant software trend of the 1990's. According to the 

literature, it should enhance maintainability, reduce the error rate and increase 

productivity, with several advances to data processing [Meyer 1997]. 

The idea of applying object-oriented reverse engineering is that in a 

simple way and with limited efforts the software engineer can make a model of 

an existing system. With a model, one can reason about where a change can be 

performed, its extent, and how it shall be mapped on the existing system. 

Moreover, the new model is object-oriented and can serve as a basis for a future 

development plan. 

The first relevant work involving the object-oriented technology was 

presented by Jacobson & Lindstrom [Jacobson and Lindstrom 1991], who 

applied reengineering in legacy systems that were implemented in procedural 

languages, such as C or COBOL, obtaining object-oriented systems. Jacobson & 

Lindstrom state that reengineering should be accomplished in a gradual way, 

because it would be impracticable to substitute an old system for a completely 

new one (what would demand many resources). They considered three different 

scenarios: changing the implementation without changing functionality; partial 

changes in the implementation without changing functionality; and changes in 

the functionality. Object-orientation was used to accomplish this 

modularization. Jacobson & Lindstrom used a specific Computer-Aided 

software Engineering (CASE) tool and defended the idea that reengineering 

processes should focus also on tools to aid the software engineer.  

Gall & Klösh [Gall and Klösch 1994] proposed heuristics to find objects 

based on data store entities (DSEs) and non-data store entities (NDSEs) which 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

14 

act primarily over tables representing basic data dependence information. The 

tables are called (m, u) tables, since they store information on the manipulation 

(m) and the use (u) of variables. With the help of an expert, a basic assistant 

model of the object oriented application architecture is devised, for the 

production of the final generated Reverse Object-Oriented Application Model 

(ROOAM). 

Yeh et al. [Yeh et al., 1995] proposed a more conservative approach based 

not just on the search of objects, but directed to find abstract data types (ADTs). 

Their approach, called OBAD, is encapsulated by a tool, which uses a data 

dependence graph between procedure and structure types as a starting point for 

the selection of abstract data types candidates. The procedures and structure 

types are the graph nodes, and the references between the procedures and the 

internal fields are the edges. The set of connected components in this graph 

forms the set of candidate ADTs. 

In 1995, Wilkening et al. [Wilkening et al., 1995] presented a process for 

legacy systems reengineering using parts of their implementation and design. 

The process begins with the preliminary source code restructuring, to introduce 

some improvements, such as removal of non-structured constructions, “dead'” 

code and implicit types. The purpose of this preliminary restructuring is to 

produce a program that is easier to analyze, understand and restructure. Then, 

the produced source code is analyzed and its representations are built in high-

level abstraction. Those representations are used in the subsequent 

restructuring steps, redesign and redocumentation, which are repeated as many 

times as necessary in order to obtain a fully restructured system. Next, 

reimplementation and tests are performed, finalizing the reengineering process. 

To transform programs from a procedural to an object-oriented 

structure, Wilkening presupposes that the programs are structured and 

modular, otherwise they cannot be transformed. Structured means that there 

are no GOTO like branches from one segment of code to another, for instance. 

Modular means that the programs are segmented in a hierarchy of code 

segments, each one with a single entry and a single exit. The segments or 

procedures should correspond to the elementary operations of the program. 

Each operation should be reachable by invoking it from a higher level routine. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

15 

The other prerequisite is to establish a procedural calling tree for the subroutine 

hierarchy so that all subroutines are included as part of the procedure with calls 

or performs them.  

Wilkening et al. also define three major prerequisites for object-oriented 

reverse engineering: procedural structuring, modularization and inclusion of 

subroutines. 

Another fundamental work of object-oriented reengineering is presented 

in [Sneed 1996], where Sneed describes a reengineering process aided by a tool 

to extract objects starting from existent programs in COBOL. He emphasizes the 

predominance of the object technology, mainly in distributed applications with 

graphic interfaces, questioning the need to migrate legacy systems toward that 

technology. He identifies obstacles to the object-oriented reengineering, such as 

the object identification, the procedural nature of most of the legacy systems, 

the code redundancy and the arbitrary use of names. 

Similarly to Wilkening et al., Sneed assumes as prerequisites for the 

object-oriented reengineering the structuring and programs modularization. 

However, he also defends the existence of a system calls tree, to identify 

procedure calls within the system. Sneed's object-oriented reengineering 

process is composed of five steps: object selection, operation extraction, feature 

inheritance, redundancy elimination and syntax conversion. The first step must 

be performed by the user, optionally supported by a tool. The second step 

extracts all the operations performed upon the selected objects, replacing the 

removed code segments with calls to their respective objects. The third step 

creates attributes in the objects, to represent the data that were accessed by the 

operations removed in step two. The fourth step merges similar classes and 

removes redundant classes. The final step converts the remaining classes into 

Object-COBOL, in a straight forward conversion process. 

The transformation of procedural programs into object-oriented 

programs is not trivial. It is a complex multi-step, a m:n transformation process 

relationship which requires human intervention in defining what objects should 

be chosen. Although there are already some commercially available tools to aid 

the tasks of reverse engineering, a bigger effort is still needed to face the 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

16 

complexity of the existing systems, not only because of their size, but also due to 

their intrinsic complexity. 

2.2.3. Incremental approaches 

The approaches presented in Sections 2.2.1 and 2.2.2 involves the entire system 

reconstruction. For this reason, the software must be frozen until execution of 

the process has been completed; in other words, no changes are possible during 

this period. In fact, if a change or enhancement is introduced, the legacy system 

and the renewal candidate would be incompatible, and the software engineers 

would have to start the process all over again from the beginning. This situation 

causes a loop between the maintenance and the reengineering process. 

To overcome this problem, several authors have suggested wrapping the 

legacy system, and considering it as a black-box component to be reengineered. 

Due to the iterative nature of this reengineering process, during its execution 

the system will include both reengineered and legacy components, coexisting 

and cooperating in order to ensure the continuity of the system. Finally, any 

maintenance activities, if required, have to be carried out on both the 

reengineered and the legacy components, depending on the procedures they 

have an impact on.  

The first important iterative process was proposed by Olsem [Olsem 

1998]. According to him, legacy systems are formed by four classes of 

components (Software/Application, Data Files, Platforms and Interfaces) that 

cannot be dealt with the same way. The incremental reengineering process 

proposed by him uses different strategies for each class of components, reducing 

the failure probabilities in the process. 

Another important contribution from Olsem's work is that he proposes 

two ways to perform incremental reengineering: with re-integration, in which 

the reconstructed modules are re-integrated into the legacy system, and without 

re-integration, in which the modules are identified, isolated and reconstructed, 

maintaining the interface with the modules that were not submitted to the 

process through a mechanism called “Gateway'”. 

In 2003, Bianchi et al. [Bianchi et al., 2003] presented an iterative model 

for reengineering legacy systems. The novelties of the proposed process include: 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

17 

(i) the reengineering is gradual, i.e., it is iteratively executed on different 

components (data and functions) in different phases; and (ii) during execution 

of the process there will be coexistence of legacy components, which are: 

components currently undergoing reengineering, reengineered components, 

and new components added to the system to satisfy new functional requests. 

In another work, Zou & Kontogiannis [Zou and Kontogiannis 2003] 

proposed an incremental source code transformation framework that allows for 

procedural system to be migrated to modern object oriented platforms. Initially, 

the system is parsed and a high level model of the source code is extracted. The 

framework introduces the concept of a unified domain model for a variety of 

procedural languages such as C, Pascal, COBOL, and Fortran. Next, to keep the 

complexity and the risk of the migration process into manageable levels, a 

clustering technique allows the decomposition of large systems into smaller 

manageable units. A set of source code transformations allows the identification 

of an object model from each unit. Finally, an incremental merging process 

allows the binding of the different partial object models into an aggregate 

composite model for the whole system. 

There are several benefits associated with iterative processes: by using 

“divide et impera” (“divide-conquer”) techniques, the problem is divided into 

smaller units, which are easier to manage; the outcomes and investment return 

are immediate and concrete; the risks associated with the process are reduced; 

errors are easier to find and correct, not putting the whole system at risk; and it 

guarantees that the system will continue to work even during execution of the 

process, preserving maintainers' and users' familiarity with the system [Bianchi 

et al., 2000]. 

2.2.4. Component-Based approaches 

Currently, on the top of object-oriented techniques, an additional layer of 

software development, based on components is being established. The goals of 

“componentware” are very similar to those of object-orientation: reuse of 

software is to be facilitated and thereby increased; software shall become more 

reliable and less expensive [Lee et al., 2003]. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

18 

Component-Based Development (CBD) is not a new idea. McIlroy 

[McIlroy 1968] proposed using modular software units in 1968, and reuse has 

been behind many software developments. The extraction of reusable software 

components from entire system is an attractive idea, since software objects and 

their relationships incorporate a large amount of experience from past 

development. It is necessary to reuse this experience in the production of new 

software. The experience makes its possible to reuse software objects [Caldiera 

and Basili 1991]. 

Among the first research work in this direction, Caldiera & Basili 

[Caldiera and Basili 1991] explored the automated extraction of reusable 

software components from existing systems. They propose a process that is 

divided in two phases. First it chooses, from the existing system, some 

candidates and packages them for possible independent use. Next, an engineer 

with knowledge of the application domain analyzes each component to 

determine the services it can provide. The approach is based on software models 

and metrics. According to Caldiera & Basili, the first phase can be fully 

automated: “reducing the amount of expensive human analysis needed in the 

second phase by limiting analysis to components that really look worth 

considering”. 

Some years later, Neighbors [Neighbors 1996] presented an informal 

research, performed over a period of 12 years, from 1980 to 1992, with 

interviews and the examination of legacy systems, in an attempt to provide an 

approach for the extraction of reusable components. Although the paper does 

not present conclusive ideas, it gives several important warnings regarding large 

systems. According to Neighbors, the architecture of large systems is a trade-off 

between top-down functional decomposition and bottom-up support of layers of 

Application Programming Interfaces (API’s or virtual machines). Therefore, 

attempts to partition a system according to one of these approaches will not 

succeed. A better partitioning is the idea of subsystems, which encapsulate 

convenient to system designers, maintainers and managers. The next step is to 

extract them into reusable components, which may be performed manually or 

automatically. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

19 

Another work involving software components and reengineering may be 

seen in [Alvaro et al., 2003], where they present a CASE environment for the 

software reengineering based on components, called Orion-RE. The 

environment uses software reengineering and Component-Based techniques to 

rebuild legacy systems, reusing the available documentation and the built-in 

knowledge in their source code. A software process model drives the 

environment usage through the reverse engineering, to recover the system 

design, and forward engineering, where the system is rebuilt using modern 

technologies, such as design patterns, frameworks, component-based 

development principles and middleware. Alvaro observed some benefits in the 

reconstructed systems, such as greater reuse degree and easier maintenance, in 

addition to benefits due to the automation achieved through CASE. 

Other similar approach is proposed in [Lee 2003], where is presented a 

process to reengineer an object-oriented legacy system into a component-based 

system. The components are created based upon the original class relationships 

that are determined by examining the program source code. The process is 

composed of two parts: (i) to create basic components with composition and 

inheritance relationship among constituent classes; and (ii) to refine the 

intermediate component-based system using the metrics they propose, which 

include connectivity strength, cohesion, and complexity. Finally, their approach 

is based on a formal system model, reducing the possibility of misunderstanding 

a system and enabling operations to be correctly executed. 

These four approaches are examples of the tendency on reverse 

engineering research, as observed by Keller et al. [Keller et al., 1999]. 

Component-Based approaches are being considered in reverse engineering, 

mainly due to their benefits in reuse and maintainability. However, there is still 

a lack of a complete methodology to reengineer legacy systems into component-

based systems. But this lack is not restricted to reverse engineering. As can be 

seen in [Bass et al., 2000], the problems faced when considering Component-

Based approaches in reengineering are only a smaller set of the problems 

related to Component-Based Software Engineering in general. While these 

problems remain unsolved, reengineering may never achieve the benefits 

related to software components. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

20 

2.3. New Research Trends 

Figure 2.2 summarizes the survey presented on Section 2.2. In summary, 

the first works focused on source-to-source translation, without worrying about 

readability and quality of the generated products. Later, with the appearance of 

OO technology, there was an increasing concern over the quality of source code 

and documentation. However, its appearance also introduced problems related 

to paradigm changing, since most legacy systems were procedural. In order to 

reduce these problems, incremental approaches were proposed as alternatives 

to give more flexibility to the processes, allowing the coexistence of legacy and 

reengineered systems. 

Component-Based approaches do not follow this evolution (source-to-

source → object-orientation → incremental approaches) and have been sparsely 

researched over the years. This may be explained by the recent nature of 

Component Based Development and its associated problems, inhibiting 

researchers in their efforts. 

 

Figure 2.2. Timeline of Reengineering Approaches [Garcia 2005] 

 This work has not identified considerable advances in these four areas 

since 2004. Nevertheless, some works that initiate other approaches were 

identified. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

21 

The emergence of Aspect-Oriented Software Development (AOSD) 

technologies started a new trend. Investigations about AOSD in the literature 

have involved to determine the extent to which it can be used to improve 

software development and maintenance, along the lines discussed by Bayer 

[Bayer 2000]. Lippert & Lopes [Lippert and Lopes 2000], present a study that 

points the ability of the AOSD in facilitating the separation of the exceptions 

detection and handling concern, involving the examining and reengineering of a 

Java-built framework [Kiczales et al., 2001]. 

An approach to retrieve the knowledge embedded in an object-oriented 

legacy system using AOSD is also presented in [Garcia 2005]. The Phoenix 

approach aids the migration from object-oriented code, written in Java, to a 

combination of objects and aspects, using AspectJ. It uses aspect mining in 

order to identify possible crosscutting concerns from the OO source code and 

extracts them through refactoring into new aspect-oriented code. Some benefits 

of this approach are: (i) requirements traceability, (ii) better legibility; (iii) 

better maintainability; (iv) automatization and (v) aspects reuse. In addition, 

this approach has some problems, such as (i) a high effort to previously build 

the transformers, (ii) problems with the Aspect notation and (iii) a lack of a test 

method to verify the new system. 

Additionally, many methods and tools have been proposed to port legacy 

applications toward a top-down or a bottom-up way. The bottom-up approaches 

consist in focus on the reengineer process in the data access of systems. 

Otherwise, the top-down way consists in focusing on the user interface 

interactions. 

The bottom-up approaches consists in focus on understanding of 

database layer of legacy applications. According to Sneed & Erdos [Sneed and 

Erdos 1996], data is the essence of business information systems and business 

transactions are directed toward creating, maintaining and utilizing the 

company data stores. They propose a method for identifying and extracting 

business rules by means of data output identification and program stripping. In 

addition, Bianchi [Bianchi 2000] proposed an iterative method and process for 

data reengineering, and Yeh & Li [Yeh and Li 2005] a process for extracting 

entity relationship diagram from a table-based legacy database. 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

22 

The top-down approaches are based on the analysis of system interfaces 

and system behavior and focus on port legacy applications toward new 

environments through the migration of their user interfaces (UI). In 1999,  Liu 

& Alderson [Liu et al., 1999] proposed a semiotic approach to requirements 

recovery by studying the legacy system’s behavior, which includes input, output 

and other user interactions. In addition, this approach was used to migrate 

legacy graphical user interfaces (GUIs) from one toolkit to a new one [Moore 

and Moshkina 2000], to migrate legacy systems using character based UIs 

directly onto GUIs [Aversano et al., 2001] and onto an abstract description for a 

successive implementation on GUIs, World Wide Web (WWW) or Wireless 

Application Protocol (WAP) UIs [Kapoor and Stroulia 2001]. 

In addition to these approaches, with the advances of data mining 

techniques a new trend starts to appear. El-Ramly & Stroulia [El-Ramly et al., 

2002a, El-Ramly et al., 2002b] present a process for software requirements 

recovery that adopt data mining to discover patterns by the legacy application 

users, based on traces of their interaction with the application. Another 

approach using data mining techniques was proposed by Sartipi et al. [Sartipi et 

al., 2000].  This method aims to recover the high level design of legacy systems 

by mining the system in a database. He defined the Architectural Query 

Language (AQL) language, which is used by the user to define the queries to be 

applied in the database to recover the application design.  

2.4. Key points of  Software Reengineering 

Even with the existence of many processes, methods and approaches to 

reengineering, some flaws still exist. Currently, unresolved issues include  (i) 

the recovery of the entire system (interface, design and database), and to trace 

the requirements from interface to database access, instead of only 

architectural, database or user interface recovery; (ii) the recovery of system 

functionality, i.e., what the system does, instead of recovering only the 

architecture, that shows how the system works; (iii) the difficult of managing 

the huge data amount present in the systems; and (iv) the high dependency of 

the expert’s knowledge. 

 In addition, Müller et al. [Müller et al., 2000] identified that “in current 

research and practice, the focus of both forward and reverse engineering is at 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

23 

the code level. Forward engineering processes are geared toward producing 

quality code. The importance of the code level is underscored in legacy systems 

where important business rules are actually buried in the code. During the 

evolution of software, change is applied to the source code, to add function, fix 

defects, and enhance quality. In systems with poor documentation, the code is 

the only reliable source of information about the system. As a result, the 

process of reverse engineering has focused on understanding the code.” 

However, the code does not contain all the information needed. Typically, 

knowledge about architecture and design tradeoffs, engineering constraints, and 

the application domain only exists in the minds of the software engineers [Bass 

et al., 1997]. Nevertheless, over time memories fade, people leave, documents 

decay and complexity increases [Lehman 1980], turning the source code the 

only source of legacy systems knowledge, and making the reverse engineering a 

hard and expensive activity. 

In studies trying to establish a roadmap for reverse engineering research 

for the new millennium [Müller 2000, Canfora and Penta 2007], researchers 

identified, among other things, that tool integration and adoption should be 

central issues for the next decade. Also, we need to evaluate reverse 

engineering tools and technology in industrial settings with concrete 

reengineering tasks at hand, to increase tool maturity and interoperability, and 

this adoption. 

2.5. Chapter Summary 

Reengineering is the examination and alteration of a subject system to 

reconstitute it in a new form and the subsequent implementation of the new 

form. It is composed by a Reverse Engineering phase, which is the system 

understanding, followed by Forward Engineering phase, which is the re-

implementation [Chikofsky and Cross 1990].  This process can be a way for 

companies to decrease maintenance costs of legacy systems, in addition to reuse 

legacy embedded knowledge in new systems projected to attend new demands 

of its business dynamics. 

 In this chapter, the taxonomy of reengineering was presented, as well as a 

survey on reengineering approaches. Also, the flaws on current approaches, the 



Chapter 2 – Key Developments in the Field of Software Reengineering 

 

24 

new research trends and the future perspectives were presented, pointing to the 

needs for tools to support the reverse engineering tasks. 

 In this context, the next chapter presents the state-of-the-art and practice 

on the reverse engineering tools field, discussing their origins, fundamentals 

and main requirements, strong and weak points, in order to define a base for the 

tool defined in this work. 



 

Reverse Engineering 
Tools: The State-of-
the-Art and Practice 

 

Reverse engineering is the process of analyzing a subject system to identify 

the system’s components and their interrelationships; and create a 

representation of the system in another form or at a higher level of abstraction 

[Chikofsky and Cross 1990].  

Despite the maturity of reengineering and reverse engineering research, 

and the fact that many pieces of reverse engineering work seem to timely solve 

crucial problems and to answer relevant industry needs, studies indicate that 

the adoption of current available tools to automate the tasks in industry is still 

limited [Müller 2000, Canfora and Penta 2007]. 

In this regard, this chapter surveys the state-of-the-art and practice on the 

reverse engineering tools field, discussing their origins, fundamentals, strong 

and weak points and main requirements, trying to establish some relations 

between them, in order to define a base for an efficient tool to support reverse 

engineering activities in industrial environments.  

The survey was based on the main literature of reengineering, reverse 

engineering and software engineering areas, including the Working Conference 

on Reverse Engineering (WCRE), the International Conference on Software 

Maintenance (ICSM), the European Conference on Software Maintenance and 

Reengineering (CSMR), the International Conference on Program 

Comprehension (ICPC), the International Conference on Software Engineering 

(ICSE), the IEEE Transactions on Software Engineering, and the Journal of 

Systems and Software, among others. In addition, web search engines, such as 

3 



Chapter 3 – Reverse Engineering Tools 

 

26 

www.scirus.com and www.google.com, and the web portal of ACM and IEEE 

organizations were also consulted, aiming to find more data related to the area. 

3.1. Reverse Engineering Tools  

The reverse engineering and program comprehension were always 

present in the software engineering context. Initially, these activities were 

performed by reading the source code, in most cases in the write and compile 

environment itself. In the 80s, two kinds of work were created to assist the tasks 

of source code understanding: (i) grep4-like tools, such as grep, egrep, and 

fgrep, which match regular expressions, and (ii) tools that detect plagiarism in 

programs [Grier 1981, Berghel and Sallach 1984, Madhavji 1985]. 

In 1992, Paul [Paul 1992] analyzed these tools and recognized the main 

criticism for these approaches. The general criticism of grep-like tools, mainly 

for tasks involving finding program patterns, is that they are predominantly 

line-based, match extremely low-level syntactic entities like characters, and 

cannot be used effectively to express constraints that exist within patterns. On 

the order hand, plagiarism detectors are mostly based on software metrics and 

allow very little user interaction, neither of which is ideal for the kinds of 

problems addressed. Based on these facts, Paul proposed the SCRUPLE, A 

Reengineer’s Tool for Source Code Search, which focuses on source code search, 

addressing the automatic detection of source code sections that fit patterns 

defined in a pattern language. In this work, Paul claims that the efficiency of 

automatic search lies in the representation of the source code and the pattern 

being searched. 

A prototype was built for C and PL/AS programming languages, and run 

in the Centre for Advanced Studies of IBM Canada. In general, SCRUPLE was 

demonstrated as an effective tool to find matches of source code fragments 

based on partial specifications. Although many other issues are required to 

support an effective reverse engineering tool, this tool can be considered the 

first step towards it. 

Along the years, prototypes of the tool were built and demonstrated at 

conferences. Although the project was supported by a fellowship from IBM 

                                                 
4
 http://www.gnu.org/software/grep/ 



Chapter 3 – Reverse Engineering Tools 

 

27 

Canada LTD., detailed information about practical use of the tool in other 

industrial context was not found. 

In 1988, Müller and Klashinsky [Müller and Klashinsky 1988] built the 

Rigi, a model and a tool for programming-in-the large.  They used a graph 

model and abstraction mechanisms to structure and represent the information 

accumulated during the development process. According to Müller and 

Klashinsky, Rigi was designed to address three of the most difficult problems in 

the area of programming large systems:  (i) the mastery of the structural 

complexity of the large software systems, (ii) the effective presentation of all 

information accumulated during the development process, and (iii) the 

definition of procedures for checking and maintaining the completeness, 

consistency and traceability of system descriptions. The major objective of Rigi 

was to effectively represent and manipulate the building blocks of software 

systems and their numerous dependencies. The tool has four functional 

requirements (FR): (FR1) Readability and ease of understanding of system 

descriptions; (FR2) Defining system structure; (FR3) Interface consistency 

and integration mechanisms; and (FR4) Version and release control; 

The Rigi project was continually improved and in 1993 Müller [Müller et 

al., 1993] presented a new perspective to it, that was to understand software 

systems using reverse engineering technology perspectives from the project. 

This work presented a reverse engineering technology developed as part of the 

Rigi project, which involves the identification of software artifacts in the subject 

system and the aggregation of these artifacts to form more abstract architectural 

models. For the reverse engineering perspectives, they focused a new set of 

functional and non-functional requirements (NFR) requirements, which are 

(FR5) Involving the user; (FR6) Summarizing software structure, (FR7) 

Documenting with views, and (NFR1) Scalability, flexibility, and extensibility. 

The approach was used in projects at IBM Canada. 

Nowadays, Rigi is an open source tool that supports reverse engineering 

of programs written in C, C++, COBOL and PL/AS. In addition, according to the 

tool’s website5, an extension to support JAVA applications is being developed as 

part of a Master Dissertation. Furthermore, Rigi was used in several industrial 

                                                 
5
 http://www.rigi.csc.uvic.ca 



Chapter 3 – Reverse Engineering Tools 

 

28 

projects, such as the reverse engineer of a 57 kilo lines of code (KLOC) and a 82 

KLOC physics programs, in 1990 and 1991, written in COBOL and C program 

languages respectively, the analysis of a large commercial database manager 

(SQL/DS) between 1992 and 1993, the examination of NASA's CLIPS expert 

system shell, and the use by NOKIA to support visualization and abstraction, 

with published papers in 2002 and 2003.  

In 1997, Singer [Singer et al., 1997] performed an examination of the 

software engineering work practices, and discusses the advantages of 

considering work practices in designing tools for software engineers. Moreover, 

it was presented three functional and seven non functional requirements for a 

tool that support systems comprehension, using them to define the TkSee tool. 

The functional requirements are: (FR1) Provide search capabilities such that 

the user can search for, by exact name or by way of regular expression pattern-

matching, any named item or group of named items that are semantically 

significant in the source code, (FR2) Provide capabilities to display all relevant 

attributes of the items retrieved in requirement FR1, and all relationships 

among them, and (FR3) Provide capabilities to keep track of separate searches 

and problem-solving sessions, and allows the navigation of a persistent history. 

On the other hand, the Non-Functional Requirements are: (NFR1) To be able 

to automatically process a body of source code of very large size, i.e. consisting 

of at least several million lines of code, (NFR2) Respond to most queries 

without perceptible delay, (NFR3) Process source code in a variety of 

programming languages, (NFR4) Wherever possible, be able to interoperate 

with other software engineering tools, (NFR5) Permit the independent 

development of user interfaces (clients), (NFR6) Be well integrated and 

incorporate all frequently-used facilities and advantages of tools that SE’s 

already commonly use, and (NFR7) Present the user with complete 

information, in a manner that facilitates the “just in time comprehension”. 

The project ran from 1995 to 2006 and supports Assembler, Pascal and 

C/C++ programming languages. According to project website6, it is complete. 

The project produced several publications in conferences and, according to 

Singer, was used in a large telecommunications system of the company which 

                                                 
6
 http://www.site.uottawa.ca/~tcl/kbre/ 



Chapter 3 – Reverse Engineering Tools 

 

29 

participated of the study for the design of the tool. However, detailed 

information about practical use of the tool in other industrial context was not 

found. 

Storey et al. [Storey et al., 1999] studied cognitive design elements to 

support the construction of mental model during software exploration in a work 

of 1997 published in 1999.  They described a hierarchy of cognitive issues that 

should be considered during the design of a software exploration tool, shown in 

Figure 3.1. In addition, the work described how these cognitive design elements 

may be applied to the design of an effective interface for software exploration 

and applied the framework to the design and evaluation of a tool for software 

exploration, called SHriMP – Simple Hierarchical Multi-Perspective. 

 

Figure 3.1 Cognitive Design Elements [Storey 1999] 



Chapter 3 – Reverse Engineering Tools 

 

30 

The SHriMP tool was developed using the Rigi structure. Thus, it can be 

used for the same programming languages: C/C++, Cobol, PL/As. In addition, it 

has a plug-in to JAVA code and is able to understand complex knowledge bases, 

in conjunction with the Protégé7 tool. 

Although the list of several sponsors in the tool website8, such as IBM, 

National Cancer Institute, U.S., and Defense Research and Development 

Canada, detailed information about practical use of the tool in industrial context 

was not found. 

In 2000, Zayour and Lethbridge [Zayour and Lethbridge 2000] 

introduced a methodology based on cognitive analysis that is aimed towards 

maximizing the adoptability of a tool. They applied cognitive analysis to identify 

cognitively difficult aspects of maintenance work, and then derived cognitive 

requirements to address these difficulties. Thus, they described the approach in 

the context of the implementation of a reverse engineering tool called DynaSee. 

Zayour and Lethbridge based the study on the human short term 

memory (STM) capabilities, which is related to the amount of attention and 

mental energy that is required by an engineer to accomplish a task. Thus, they 

sorted the requirements into two categories: Minimize the number of artifacts 

that have to be kept in STM, and Minimize STM fading. The first requirements 

comprises (FR1) Make the required artifacts easily available to the user, (FR2) 

Facilitate meaningful encoding, and (FR3) Reduce the uncertainty during 

exploration. The last requirements comprise (FR4) Minimize the time that 

artifacts have to be retained in STM, and (FR5) Minimize the complexity of 

tasks among successive artifact acquisitions. These requirements were used to 

implement the DynaSee tool and to apply it in context of a telecommunication 

company. 

Despite of information about which programming languages are 

supported by DynaSee tool, it was used in a telecommunications system largely 

written in a proprietary language and contains several million lines of code with 

over 16000 routines in over 8000 files. This system is the same one used by the 

                                                 
7
 http://protege.stanford.edu/ 

8
 http://www.thechiselgroup.org/shrimp 



Chapter 3 – Reverse Engineering Tools 

 

31 

TKSee tool. Currently, DynaSee was incorporated by TkSee tool, and became a 

part of them. 

Favre [Favre 2001] claims that large software products are difficult to 

understand because they are made of many entities of different types in 

concrete representations, usually not designed with software comprehension in 

mind. Thus, in 2001 he proposed the GSEE: a Generic Software Exploration 

Environment made of an object-oriented framework and a set of customizable 

tools that, with only few lines of implementation, produces graphical views from 

virtually any source of data. In order to build this tool, three requirements were 

kept in mind: (FR1) multi-source exploration, (FR2) multi-visualization 

exploration and (FR3) customizable exploration. 

According to Favre, the environment can be used to produce views from 

virtually any source of data, and was successfully applied in the context of 

Dassault Système, in a software composed of more than 40.000 C++ classes. 

However, according to a personal contact with Favre9, “the tool is discontinued. 

This was a running prototype but we were unable to find means to consolidate 

it and make it really usable by third parties.” 

In 2003, Lanza and Ducasse [Lanza and Ducasse 2003] presented the 

concept of polymetric view, a lightweight software visualization technique 

enriched with software metrics information. The work discussed benefits and 

limits of several predefined polymetrics views that were implemented in the 

CodeCrawler tool. In the same year, it was published a set of lessons learned in 

building the tool [Lanza 2003], including the implementation, and was 

identified five key issues pertinent to the implementation of a reverse 

engineering tool, namely (i) the overall architecture, (ii) the internal 

architecture, (iii) the visualization engine, (iv) the metamodel and (v) the 

interactive facilities. 

The CodeCrawler is an open source tool, under BSB license. It relies on 

the FAMIX Metamodel [Demeyer et al., 2001] that has been implemented in the 

Moose environment [Nierstrasz et al., 2005] which models object-oriented 

languages such as C++, Java, Smalltalk, and also procedural languages like 

                                                 
9
 http://megaplanet.org/jean-marie-favre/ 



Chapter 3 – Reverse Engineering Tools 

 

32 

COBOL. Several papers discuss the tool, and some case studies are shown. One 

interesting case study is the understanding of a 1.2 million LOC of C++ code. 

However, CodeCrawler author did not explain performance issues of this case 

study, which is important because the tool keep all entities in memory. In 

addition, according to the tool’s website, it was downloaded more than 2.000 

times, but a public track about companies and projects that use the tool was not 

found. 

 Four years after, Schäfer et al. [Schäfer et al., 2006] built the SEXTANT 

Software Exploration Tool. In this work, it was discussed a set of functional 

requirements for software exploration tools, and present the SEXTANT tool 

based on these requirements, which are: (FR1) Integrated Comprehension, 

(FR2) Cross-Artifact Support, (FR3) Explicit Representation, (FR4) 

Extensibility, and (FR5) Traceability.  In addition, Schäfer et el. discussed 

SEXTANT tool with respect to the requirements of other three works that 

discuss comprehension support with respect to cognition, also related in our 

work [Singer 1997, Storey 1999, Zayour and Lethbridge 2000]. 

The SEXTANT tool only supports JAVA code, and is still a research 

project with no industrial use identified by the author. 

3.2. Towards an Effective Software Reverse 
Engineering Tool 

Figure 3.2 summarizes the timeline of research on the software reverse 

engineering tools, from the first efforts after the pure source code visualization 

techniques [Paul 1992] and adaptation of an engineering tool to improve 

reengineering capabilities [Müller 1993] until more recent efforts to source code 

exploration [Schäfer 2006]. This timeline does not intend to be complete, but is 

based on the most known tools, providing useful information about the 

requirements of a reverse engineering tool. Some requirements are commonly 

supported by several tools, and others are specific of others.  In order to define a 

set of requirements for an effective reverse engineering tool, we analyzed these 

requirements and tried to establish a relationship among them. 

From the analysis of the tools presented in Section 2.1, six functional and 

three non functional requirements needed to the development of an effective 



Chapter 3 – Reverse Engineering Tools 

 

33 

reverse engineering tool were identified. The functional requirements are (FR1) 

visualization of entities and relations, (FR2) abstraction mechanisms and 

integrated comprehension, (FR3) user interactivity, (FR4) search capabilities, 

(FR5) trace capabilities, and (FR6) metrics support. The non-functional 

requirements identified are: (NFR1) Cross artifacts support, (NFR2) 

Extensibility, (NFR3) Integration with other tools. Next, these requirements 

are described in details. 

  

Figure 3.2. Timeline of Reverse Engineering tools 

FR1. Visualization of entities and relations: In 1992, based on 

several years of following applications in large industrial projects, Harel [Harel 

1992] claimed that “the use of appropriate visual formalisms can have 

spectacular effect on engineers and programmers“.  In general, the community 

has a common sense that the easy visualization of the entities of a system and 

these relationships, usually named and presented by a Call Graph, are 

important issues of a software visualization tool, mainly because a graphical 

presentation of entities and its relations provide an easy understanding and a 

useful representation of the entire system and subsystems. In this sense, Ware 

[Ware 2000] claims that other possible graphical notations for showing 

connectivity would be far less effective. Thus, almost all of reverse engineering 

tools have a structure of call graph that allow the visualization of systems 

entities and relationships. The Rigi project focuses on this type of visualization 

to achieve the goals of readability and ease understanding of system 

description, and to help to define system structure. Moreover, Tksee project 



Chapter 3 – Reverse Engineering Tools 

 

34 

shows this kind of structure to display all relevant attributes of the items, and 

all relationships among them. In addition, the PBS, SHriMP, GSEE, Code 

Crawler and Sextant tools provide this type of functionality. 

FR2. Abstraction mechanisms and integrated comprehension: 

The understanding of large software system is a hard task. The visualization of 

the entire system in one single view usually presents a lot of information that is 

difficult to understand. Thus, the capability to present several views and 

abstraction levels as well as to allow user create and manipulate these views is 

fundamental for the understanding of large software systems. In this sense, the 

Rigi and the SHriMP tools provide specific facilities to abstraction and 

generation of new views of the system.  

FR3. User interactivity: As mentioned previous, the capability of 

creation of user abstractions and views of a system is a desirable requirement in 

a software reverse engineering tool. In addition, other interactivity options are 

also important, as the possibility of user annotations about the code, 

abstractions and views. This type of functionality permits recognition of 

information about the assets by other user or by the same user another time in 

the future, avoiding duplicate work. Other important interactivity issue is the 

possibility to show to the user an easy mechanism to switch between the high 

level code visualization and the source code, to permit to him the view of the two 

kind of code representation without lose cognition information. In this sense, 

almost all of studied reverse engineering tools have this type of user 

interactivity, with exception of TkSee and DynaSee tools. 

FR4. Search capabilities: During software exploration, related 

artifacts are successively accessed. Thus, it is highly recommended to minimize 

the artifact acquisition time, as well as the number and complexity of 

intermediate steps in the acquiring procedure. This way, the support of arbitrary 

navigation, such as search capabilities, is a common requirement in software 

reverse engineering tools, and has focus on all studied reverse engineering tools, 

with exception of PBS, Code Crawler and Sextant. 

FR5. Trace Capabilities: The software reverse engineering is a task 

that requires a large cognitive effort to maintain the followed paths in memory. 

In general, the user spends many days following the execution path of a 



Chapter 3 – Reverse Engineering Tools 

 

35 

requirement to understand it, and often is difficult to mentally recover the 

execution path and the already studied items. Thus, to keep the user from 

getting lost in the execution paths, the tools should provide ways to backtrack 

the flows of the user, show already visited items and paths, and indicate options 

for further exploration. In this sense, the TkSee, SHriMP, DynaSee and Sextant 

tools have special focus on provide trace capabilities to the user. 

FR6. Metrics Support: Visual presentations can present a lot of 

information in a single view. Reverse engineering tools should take advantage of 

these presentations to show some useful information in an effective way. This 

information can be metrics about cohesion and coupling of modules, length, 

internal complexity or other kinds of information chosen by user, and can be 

presented, for example, as the color, length and format of entities in a call 

graph. In this sense, the Rigi tool provides some metrics in the visual 

presentation, and the CodeCrawler introduced the concept of Polimetric Views, 

that is a visual approach to enhance the visual presentation of a system. The 

approach consists in the possibility of enrich the basic visualization method by 

rendering up to five metric measurements on a single node simultaneously, 

based on node size (width and height), node color and node position (X and Y 

coordinates). They present examples of metrics that can be applied, which can 

be (i) modules metrics: number of methods or functions extended, number of 

attributes, number of invocation calls and number of LOC of a module; (ii) 

method metrics: method lines of code, number of parameters, number of 

invocations of other methods within method body, number of accesses on 

attributes and number of statements in method body; and (iii) attribute 

metrics: number of direct accesses from outside of its module, number of direct 

accesses from within its module and number of times directly accessed. The 

approach was useful mainly in the first steps of reverse engineering. 

NFR1. Cross artifacts support: A software system is not only source 

code, but a set of semantic (source code comments, manuals and documents) 

and syntactic (functions, operations and algorithms) information spread in a lot 

of files. The need for cross-artifact navigation has been identified in the context 

of a field study during the corrective maintenance of a large-scale software 

system [Mayrhauser and Vans 1997]. In this field study, requirements on tool 



Chapter 3 – Reverse Engineering Tools 

 

36 

capabilities were derived based on developers’ information needs; the most 

important ones concern navigation over arbitrary software artifacts. Thus, a 

reverse engineering tool should be capable of dealing with several kinds of 

artifacts, and Rigi, TkSee, PBS, GSEE and Sextant tools provide support to it. 

NFR2. Extensibility: The software development area is in constant 

evolution. The technologies and tools are in constant change, and their lifetime 

is even shorter. Therefore, due the fact of diffusion of a wide number of 

programming language dialects – a phenomenon known as the “500 language 

problem” –  [Lammel and Verhoef 2001], is desirable that a reverse engineering 

tool is not able of being used with only a specific language, technology or 

paradigm, but should be flexible, extensible, and not technology-dependent, in 

order to permit its usage with a high range of systems and increasing its 

lifetime. In this sense, the Rigi, TkSee, PBS and Sextant are capable to be 

extensible to be used in reverse engineering activities of more than one 

technology. 

NFR3. Integration with other tools: Several tools were developed to 

aid in reverse engineering tasks, as well to help the forward engineering. In 

addition, tool developers cannot foresee all contexts in which it will be used. 

Thus, as software reuse researchers advocate [Krueger 1992], it is not necessary 

reinvent new solutions when others already exists, and a tool should permit that 

features present in other tools could be incorporated in it, adopting standards to 

permit communication between distinct tools. In this sense, the architecture of 

TkSee, PBS, DynaSee and Sextant provides capabilities to integration with other 

tools. 

3.3. Summary of the Study 

Table 3.1 shows the relation between the works described in Section 3.1 and the 

requirements from Section 3.2. In the table, an “X” indicates that the 

requirement is satisfied by the work. Gaps show that the requirement is not 

even addressed by the work. 

By analyzing Table 3.1, it can be seen that there are some gaps in reverse 

engineering tools and important requirements are not considered by them, 

which often implements only a subset of these requirements. 



Chapter 3 – Reverse Engineering Tools 

 

37 

In general, the tools have capabilities of entity-relationship visualizations 

and search capabilities, which are the base of software exploration. However, 

important issues such abstraction mechanisms, metrics support and trace 

capabilities are present in only a small group of tools, and none of them support 

these three requirements at all. 

Table 3.1. Relation between the works on Reverse Engineering Tools 

and the requirements. 

Tools 
Requirement 

Scruple Rigi TkSEE SHriMP DynaSee GSEE 
Code 

Crawler 
Sextant 

Entity Relationship 
Visualization 

 X X X  X X X 

Abstraction 
Mechanisms 

 X  X     

User Interactivity X X  X  X X  

Search Capabilities X X X X X X   

Trace Capabilities   X X X   X 

Metrics Support  X     X  

Cross Artifacts 
Support 

 X X   X  X 

Extensibility  X X     X 

Integration with 
Other Tools 

  X  X   X 

 

In addition, tools address reverse engineering with focus on architectural 

recovery, instead of the recover of system requirements. Thus, it is possible to 

conclude that a lack of tools focused on requirements recovery, instead of pure 

architecture recovery, still exists. 

3.4. Chapter Summary 

Using a reverse engineering tool can be an effective way for organizations 

to obtain the benefits of reengineering, such as system understanding effort 



Chapter 3 – Reverse Engineering Tools 

 

38 

reduction. However, choosing and using a reverse engineering tool is not a 

trivial task, despite of the quantity of existent tools. 

In this chapter, eight reverse engineering tools were discussed. This 

survey contribution is twofold: it can be seen as a guide to aid organizations in 

the adoption of a reverse engineering tool, and it also offers the basis for a 

definition of a new reverse engineering tool. Additionally, based on the 

requirements of existing tools, a set of requirements for an effective reverse 

engineering tool was presented. In this context, the next chapter presents the 

tool proposed by this work. 



 

LIFT: Legacy 
InFormation 
Retrieval Tool 

 

Based on the survey that identified the main approaches for reengineering, 

with its strong and weak points, presented in Chapter 2, as well as the study of 

reverse engineering tools presented in Chapter 3, this work specifies, designs, 

implements and performs a case study of a tool for reverse engineering, focused 

on extract the requirements of legacy systems, in general performed by 

engineers with low knowledge about the systems which many times have few or 

none documentation. 

This chapter presents the requirements, architecture, implementation and 

usage of the tool. 

4.1. Requirements 

The previous chapter discussed the main requirements of eight reverse 

engineering tools, and identified some gaps and important requirements that 

are not considered by them, which in general implement only a subset of these 

requirements. In addition, these requirements were presented to an experienced 

team of the Pitang Software Factory, which had already performed reverse 

engineer of almost 2 million lines of code in 2006. Furthermore, the experience 

of the C.E.S.A.R Study Center, the RiSE Group and author experience were 

considered in the definition of the requirements. 

The requirements identified in the survey are: (FR1) visualization of 

entities and relations, (FR2) abstraction mechanisms and integrated 

comprehension, (FR3) user interactivity, (FR4) search capabilities, (FR5) 

trace capabilities, and (FR6) metrics support. The non functional requirements 

4 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

40 

identified are: (NFR1) Cross artifacts support, (NFR2) Extensibility and 

(NFR3) Integration with other tools. 

In addition, based on the lack of reengineering approaches discussed in 

Chapter 2, we defined two new functional requirements: (FR7) the recovery of 

the entire system (interface, design and database), and (FR8) the trace of 

requirements from interface to database access. Furthermore, in conjunction 

with the industry involved in this study, we defined a new functional 

requirement, which is (FR9) possibility of semi-automatic suggestions. Finally, 

in agreement with the literature and with the industry group, the non functional 

requirements of (NFR4) scalability and (NFR5) Maintainability and 

Reusability were prioritized in the tool. Next, we discuss these new 

requirements. 

FR7. The recovery of the entire system: Many reverse engineering 

tools concentrate on extracting the structure or architecture of a legacy system 

with the goal of transferring this information into the minds of the software 

engineers trying to understanding it [Müller 2000]. However, the software 

structure is not the only useful information. Most software systems for business 

and industry are information systems, and maintain and process vast amounts 

of persistent business data. Thus, the understanding of the data that is stored by 

the system is important.  However, the research in data reverse engineering has 

been under-represented in the software reverse engineering scenario, and these 

two concepts (data and software reverse engineering) are separated. While the 

main focus of code reverse engineering is on improving human understanding 

about how this information is processed, data reverse engineering tackles the 

question of what information is stored and how this information can be used in 

a different context. [Müller 2000]. 

In addition, the user interface contains the information presented to user, 

and required from him, and includes lots of information about the business 

rules of the system. 

In this sense, we believe that the possibility of recovery the entire system 

including user interface, the general design, and at least the database structure 

in a single tool should be addressed by an effective reverse engineering tool. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

41 

FR8. The trace of requirements from interface to database 

access: In Chapter 3, we discussed the requirement of (F5) Trace capabilities, 

which is related to reduce the cognitive effort of the user in reverse engineering 

tasks. In addition, we believe that other form of trace is desirable. The new 

requirement (F7) defines that is important the recovery of entire system, from 

interface to databases. However, is not important only the recovery but ways of 

isolate and show to the user the execution paths of application from user inputs 

in the interface until the persistence layer. Moreover, due to the fact that large 

systems contains many execution paths from interface to persistence, including 

loops, recursive functions and accesses to functions that not flows to 

persistence, is desirable that a reverse engineering tool provides capabilities to 

simplify these presentations, such as showing the minimal paths from interface 

to persistence layer. 

FR9. Possibility of semi-automatic suggestions: In general, the 

software engineer’s expertise and domain knowledge are important in reverse 

engineering tasks [Sartipi 2000]. However, in many cases this expertise is not 

available, adding a new drawback to the system understanding. In these cases, 

the tool should have functionalities that automatically analyze the source code 

and perform some kind of suggestions to user, such as automatic clustering and 

patterns detection. However, we identified that this kind of requirement is not 

present in existent tools, and recognize it as a new requirement for knowledge 

recovery of reverse engineering tools. 

NFR4. Scalability: Legacy systems tend to be large systems, containing 

thousands or millions of lines of code. Thus, is necessary that reverse 

engineering tools that deal with legacy systems be scalable. In this sense, 

academy and industry both agree that scalability is one of the major issues that 

reverse engineering tools are confronted [Mayrhauser and Vans 1997, Lanza 

and Ducasse 2003, Schäfer 2006], and is a requirement that must be addressed 

in the development of new reverse engineering tools. 

NFR5. Maintainability and Reusability: As previously mentioned, 

LIFT project is engaged with a reuse group. Thus, software reuse researchers 

[McIlroy 1968, Krueger 1992, Heineman and Councill 2001] advocate that the 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

42 

systems should be developed in form of buildable components, in order to 

provide good maintainability and reusability. 

We do not believe that the identified requirements are the complete set of 

requirements for a reverse engineering tool. However, we believe that they are 

the basis for the development of an effective reverse engineering tool. 

Based on these nine functional and five non functional requirements, we 

analyzed the existent tools to verify the possibility of extend one of them to 

support these requirements. Initially, based on the analysis of Table 3.1, only 

three tools are extensible: Rigi, TKSee and SEXTANT. The Rigi tool is open 

source, and provides documentation to guides its extension. However, the tool 

keeps the information about source code in the main memory, which was 

considered a critical factor that influences negatively the tool scalability. In 

addition, TKSee and SEXTANT describe the extensibility as one of their 

requirements, however no information about how to extend these tools was 

found. 

Thus, the LIFT tool was implemented. Next, we present the architecture 

and implementation details. 

4.2.  Architecture and Implementation 

The software architecture has an important role in the software live cycle.  

It involves the structure and organization by which modern system components 

and subsystems interact to form systems; and the properties of systems that can 

be better designed and analyzed at system level [Kruchten et al., 2006]. 

Additionally, software architecture separates the overall structure of the system, 

in terms of components and their interconnections, from the internal details of 

the individual components [Shaw and Garlan 1996]. Furthermore, according to 

[Clements et al., 2004], architecture can be seen as what makes the sets of parts 

work together as a successful whole, and software architecture documentation 

field is an important issue and is growing in importance in the software 

development area. 

In this context, we defined the LIFT architecture in components and 

modules aiming to satisfy the requirements presented in the last Section. The 

architecture defines the most important components, and expansion and 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

43 

integration points. Next subsections present the general architecture and 

discuss in details the main modules. At the end, it is discussed the requirements 

compliance and some architectural decisions. 

4.2.1. General Vision 

The LIFT general architecture is shown in Figure 4.1. It is a tree tier architecture 

composed by the Parser, Analyzer, Visualizer and Understanding 

Environment components. 

The parser component is responsible for dealing with the available data of 

the system to be reverse reengineered. The input is the source code of the 

application. Thus, the component performs the parser and pre-processing the 

data, and stores it in a high level structure for the use by the other tool modules 

and components. 

 

Figure 4.1. LIFT Architecture 

The analyzer component is responsible for generating useful information 

from the parsed code. The input is the pre-processed code stored in the 

database. Thus, the component performs system analysis and generates the call 

graph and other information, such as the cluster and minimal paths 

calculations. 

The visualizer is the component responsible for performing the 

visualization capabilities of the tool. The input is the refined information from 

the analyzer, and some information stored in the database. Thus, the 

component manages the data generated previously and provides capabilities of 

system visualization and exploration. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

44 

The understanding environment component is responsible for the 

integration of the other three system components, and contains user interfaces 

for the interaction between the user and the tool. 

Each one of these components is composed by some modules, and 

contributes in a proper way to satisfy the tool requirements. Next, we present 

the components in more details and discuss the requirements compliance of 

them. 

4.2.2. Parser Component 

It is responsible for organizing the system available data. The component 

is composed by two modules: The Parser and the Pre-Processing. The Parser 

module receives the source code and inserts all statements in a structured 

database. Next, the parsed code is pre-processed and organized in a higher 

abstraction level, which is used by the application. 

The parser module acts by dealing with the source code. It parses the code 

and stores it in a database. The LIFT parser was already implemented by the 

Pitang Software Factory as a .NET standalone application, specific to parse 

NATURAL/ADABAS source code. We performed small improvements in this 

application, such as bug corrections and refactory for a better modularization, 

and incorporated it as a LIFT component. Figure 4.2 shows some tables of the 

parser, in special, NaturalSource and NaturalModule. The NaturalSource table 

contains all source code statements, and its properties, such as the line where it 

appears, the complete instruction, the type of instruction and the operands, 

among others. The NaturalModule is a simple table that stores the information 

about the modules of the code. For explanation purpose, Figure 4.3 shows an 

example of a NATURAL source code, obtained in a public internet forum10. In 

addition, Figure 4.4 shows how this code is stored in the NaturalSource table. 

The circle in Figure 4.3 indicates the code shown in Figure 4.4. 

The pre-processing module is responsible for receiving the parsed code 

and preprocesses it, collecting the information which will be used by the tool. It 

accesses the parser output structure, which contains all system statements, 

processes the information and stores it in the database structure that is used by 

                                                 
10

 http://tech.forums.softwareag.com/viewtopic.php?t=7312 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

45 

the other tool’s components, focused on system modules and relations, instead 

of code statements. This is shown in Figure 4.5. Furthermore, the pre-

processing stores in the database the source code of modules, which allows the 

easy access of the application source code. 

 

Figure 4.2. Main tables of Parser module 

 

Figure 4.3. Example of a NATURAL source code 

In addition, in the current version of the tool the pre-processing is 

responsible for performing the program slice, which is the identification of 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

46 

modules that are interface and business modules. This identification is possible 

because NATURAL application modules have a character in the header that 

identify the type of the module, such as maps (interface modules), programs 

and subroutines.  

 

Figure 4.4. Source code stored in the database by the parse module 

Moreover, the pre-processing module is also responsible for the 

identification of the system database. It detects the database access statements 

and identifies the database entity accessed. Thus, the module classifies this 

entity and inserts it in the tool database. 

 

Figure 4.5. Database structure used by the pre-processing 

The parser component was split in parser and pre-processing module in 

order to allow the extensibility of LIFT tool to other languages. For example, the 

NATURAL/ADABAS parser was developed as a .NET application and to use it in 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

47 

the LIFT tool, only a pre-processor was implemented, with the responsibility to 

deal with parser output and store the information in a higher level structure. In 

order to extend the tool to deal with any other procedural language, a parser can 

be obtained by any way (by the internet, by third part, by language vendor or by 

new implementation) and only a new pre-processor must be implemented to 

deal with the parser output. 

4.2.3. Analyzer Component 

The analyzer component plays the role of analyzing the pre-processed 

code stored in the structured database and to generate representations. First, 

the call graph is generated containing all application modules, including and 

differentiating the interface and program modules, and database entities. In 

addition, this call graph contains other information, such as module size and the 

source code comments existent in the beginning of each module. This 

information is useful because in many cases developers insert in the beginning 

of the code general information about it, and the visualization of these 

comments can provides useful hints to the engineer performing reverse 

engineering tasks. 

Still within the analyzer, a second step is performed, to analyze and 

deduce useful information. We defined tree kinds of information to be recovered 

in this step, and partitioned it in three modules: (i) path module, (ii) cluster 

module, and (iii) pattern detection module. 

The path module is responsible for allowing the user to follow the 

application paths. In this sense, it calculates the entire paths of the application, 

and the minimal paths from the interface and business modules to database 

modules. 

To build the entire paths the module simply follows application calls, 

starting from the interface and business modules. In order to avoid infinite 

loops or recursion, the path sequence stops when a module already called in the 

sequence is called again. In addition, the minimal paths are calculated from all 

user interface and business modules to database modules, in order to support 

the user in following the system sequences, and make possible the trace of 

requirements from interface to database access. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

48 

Because the focus of this work is the implementation of a primary version 

of an effective reverse engineering tool, instead of the research of the best 

algorithm for minimal paths calculation in the context of reverse engineering, 

the minimal path implementation was based on the well-known and efficient 

Dijkstra algorithm [Dijkstra 1959]. The algorithm works by keeping, for each 

vertex v, the cost d[v] of the shortest path found so far between s and v. Initially, 

this value is 0 for the source vertex s (d[s]=0), and infinity for all other vertexes, 

representing the fact that we do not know any path leading to those vertexes 

(d[v]=∞ for every v in V, except s). When the algorithm finishes, d[v] will be the 

cost of the shortest path from s to v — or infinity, if no such path exists. 

The algorithm maintains two sets of vertexes S and Q. Set S contains all 

vertexes for which we know that the value d[v] is already the cost of the shortest 

path and set Q contains all other vertexes. Set S is initially empty, and in each 

step one vertex is moved from Q to S. This vertex is chosen as the vertex with 

lowest value of d[u]. When a vertex u is moved to S, the algorithm relaxes every 

outgoing edge (u,v). That is, for each neighbor v of u, the algorithm checks to see 

if it can improve on the shortest known path to v by first following the shortest 

path from the source to u, and then traversing the edge (u,v). If this new path is 

better, the algorithm updates d[v] with the new smaller value. 

The running time of Dijkstra's algorithm on a graph with n vertexes and 

m edges can be expressed using the Big-O notation [Landau 1909].  In the 

simplest implementation of Dijkstra's algorithm, the running time is O(n2). In 

addition, for sparse graphs (which is the general case of legacy systems), the 

algorithm can be implemented using a heap structure and execution time 

became O(n log n)[Ahuja et al., 1990]. In this work, we used this second 

implementation and in Chapter 5 we present a benchmark with execution times 

of minimal path algorithm. 

The cluster module is responsible for identifying and showing legacy 

system clusters that can be recognized as a higher level abstraction, an object or 

component, or modules that can be merged to form one more cohesive 

structure. The identified clusters can be analyzed separately, and can lead to a 

requirement. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

49 

By definition, “Cluster analysis groups data objects based only on 

information found in the data that describes the objects and their 

relationships. The goal is that the objects within a group be similar (or related) 

to one another and different from (or unrelated to) the objects in other groups. 

[Tan et al., 2006]. 

An entire collection of clusters is commonly referred to as a clustering, and 

various types of clustering can be distinguished: hierarchical versus partitional, 

exclusive versus overlapping versus fuzzy, and complete versus partial. An 

partitional clustering is simply a division of the set of data objects into non-

overlapping subsets (clusters) such that each data object is in exactly one subset, 

and hierarchical clustering is a set of nested clusters that are organized as a 

tree, which each node (cluster) in the tree is the union of its children 

(subclusters), and the root of the tree is the cluster containing all the objects;  in 

exclusive clustering, each object is assigned to a single cluster, while in 

overlapping clustering an object can simultaneously belong to more than one 

group, and in fuzzy clustering every object belongs to every cluster with a 

membership weigh that is between O (absolutely doesn’t belong) and 1 

(absolutely belongs); in complete clustering every object is assigned to a 

clusters, whereas in partial clustering does not, many times representing noise 

or outliers. 

Clustering aims to find useful groups of objects (clusters), which can have 

some types. A Well-Separated cluster is a set of objects in which each object is 

closer (or more similar) to every other object in the cluster than to any object 

not in the cluster. A Prototype-Based or Center-Based clusters is a set of 

objects in which each object is closer (more similar) to the prototype (or center) 

that defines the cluster than to the prototype of any other cluster. A Graph-

Based cluster is a cluster where the data is represented as a graph, where the 

nodes are objects and the links represent connections among objects. In 

Density-Based clusters, a cluster is a dense region of objects that is surrounded 

by a region of log density. Finally, Shared-Property or Conceptual 

Clusters are a set of objects that share some property. 

Based on these definitions, the three cluster techniques recognized by 

[Tan 2006] was studied, in order to choose a technique that produces relevant 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

50 

results in the LIFT tool: (i) K-means, (ii) Hierarchical Clustering and (iii) 

Density-based Clustering. 

(i) K-means is a prototype-based, partitional clustering technique 

that attempts to find a user-specified number of clusters (K), 

which are represented by their centroids. This method is simple 

and quite efficient, and has good results with globular clusters. 

However, it cannot handle clusters of different sizes and 

densities. In addition, K-means also have trouble clustering data 

that contains outliers, and is restricted to data for which there is 

a notion of a center. 

(ii) Hierarchical Clustering techniques can be separated in (a) 

agglomerative, which starts with the points as individual 

clusters and, at each step, merge the closest pair of clusters, and 

(b) divisive, which starts with one, all-inclusive cluster and, at 

each step, split a cluster until only singleton clusters of 

individual points remain. There have been some studies that 

suggest that this type of algorithm can produce better-quality 

clusters. Nevertheless, hierarchical clustering algorithms are 

expensive in terms of their computational and storage 

requirements. 

(iii) Density-based techniques locate regions of high density that 

are separated from one another by regions of low density. In the 

traditional density, center-based approach, density is estimated 

for a particular point in the data set by counting the number of 

points within a specified radius of that point. Thus, clusters are 

based in this density. This technique is relatively resistant to 

noise and can handle clusters of arbitrary shapes and sizes. Thus, 

it can find many clusters that could not be found using K-means. 

Nevertheless, it has trouble when the clusters have widely 

varying densities, and can be expensive when the computation of 

nearest neighbors requires computing all pairwise proximities, 

as is usually the case for high-dimensional data. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

51 

These methods were analyzed in the reverse engineering and system 

comprehension context. In special, the analysis focused on good approaches to 

perform graph-based clusters. 

In spite of the k-means technique being used in some reverse engineering 

approaches such as [Sartipi 2000], its limitations have strong impacts in cluster 

detection in legacy systems. In general, legacy clusters have different sizes and 

densities, with a lot of outliers, which negatively affect the quality of the clusters 

identified with this technique. In addition, in most cases system’s modules 

relationships not have a notion of a center, which is important to good cluster 

results. Finally, k-means needs the user to choose the number of clusters (k) to 

be calculated, which is difficult in the cases that the user is not familiar with the 

source code. These limitations indicates that k-means is not a good technique to 

identify clusters in legacy systems. 

On other hand, hierarchical clusters can provide good results, but it needs 

expensive computational and storage requirements, which is not desirable when 

it is necessary to deal with a large amount of information, such as legacy 

systems. Finally, density-based techniques are relatively resistant to noise that 

occurs in legacy systems graphs, but have trouble when clusters have widely 

varying densities, such as k-means techniques. In addition, this technique also 

needs expensive computational requirements. 

In this context, despite of its expensive computational and storage 

requirements, the Hierarchical Clustering technique was chosen to perform 

Graph-based cluster detection in the legacy systems call-graph, because the 

characteristics of legacy systems data do not prejudice the quality of the 

clusters. Thus, we chose the Mark Newman's edge betweenness clustering 

algorithm [Girvan and Newman 2002]. In this algorithm, the betweenness of an 

edge measures the extent to which that edge lies along shortest paths between 

all pairs of nodes. Edges which are least central to communities are 

progressively removed until the communities are adequately separated. We 

performed a small modification in the algorithm, which is the parameterization 

of the number of edges to be removed, allowing it to be interactively chosen by 

user. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

52 

The pattern detection module was designed to perform analysis of the 

code in the database and automatically detecting similarities in it, in addition to 

the paths and clusters. The similarities are: (i) text pattern detection 

occurred in module names or comments, which is useful to identify close 

modules and highlights the name conventions of application; (ii) clone 

detection occurred in source code, which is useful to highlight the “copy code” 

of application, which can be isolated in a single component, and avoid repeated 

work understanding the same piece of code several times; and (iii) graph 

pattern detection occurred in the call graph, which highlights patterns in 

application paths, providing to user best visualization of similar paths and 

groups of similar functionalities. 

The first version of LIFT tool prioritized the implementation of paths and 

cluster detection, thus, the pattern detection module was defined but not 

implemented yet. 

4.2.4. Visualizer Component 

The visualizer is responsible to manage the data generated by other 

modules, and to present these to the user in an understandable way. 

Visualization is based on the call graph generated by the analyzer component 

and has four modules: (i) normal visualization, which presents the simple 

call hierarchy, (ii) paths visualization, which presents options that facilitates 

the comprehension of application paths, (iii) cluster visualization, which 

presents options to show de clusters, and (iv) pattern visualizations, with 

options to visualization detected patterns. 

The normal visualization presents the call graph hierarchy using the 

concepts of [Lanza and Ducasse 2003] to show additional information in the 

graph. Thus, the visualization allows the user to configure modules and edges 

properties of thickness, color, format and size, according to user preferences. 

For example, the default visualization shows modules colors according to the 

layer: blue for screen modules, green for business modules and red for database 

entities. In addition, the default visualizations shows the module format 

according to the count of inputs and outputs, and the number of sides is equals 

of the sum of inputs and outputs. Moreover, the size of all modules is fixed by 

default. Furthermore, all these options are configurable. The user can change 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

53 

the colors, size and format of modules. Finally, the user can apply visual 

transformations on the graph, such as move the modules, and performs zoon 

and rotation. 

Figure 4.6 shows an example of a normal visualization of a 21KLOC 

system which contains 124 modules. In this visualization, the size of items is 

fixed, and color is presented according to graph legend (the brightness are the 

screen nodes, the black are entity nodes, and the others are the business nodes). 

In addition, node shape is proportional to the sum of node inputs and outputs, 

starting from the triangle. Figure 4.6b shows the same graph, which the 

difference is that node size is proportional to the size in LOC of correspondent 

module. 

   

Figure 4.6. LIFT Normal visualization 

The path visualization derives from the normal visualization, and was 

created to provide a more clean visualization of the paths followed by the 

application. In this module, the user sets the deep that we want to follow and 

the direction (forward, upward or both). Thus, when the user select a module, 

only the modules in the path is shown. For example, if the user set deep to one 

and mode to forward, when he select a module only these module and all direct 

accessed modules is shown. This visualization is useful because allows the user 

to easily follow both top-down as bottom-app application paths. 

a b 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

54 

The figure 4.7 shows the path mode. Figure 4.7a shows the initial 

visualization, and Figure 4.7b shows a path visualization when the user selected 

the module “MISP252A” with deep set to two and mode set to forward. 

The cluster visualization focuses on cluster detection. This visualization 

allows the user to perform cluster calculations, by the choosing of numbers of 

edges to be removed to the graph. Thus, the clusters are calculated and 

repainted, the modules of the same cluster are painted with the same colors and 

the removed edges are painted with a weak line. In addition, in order to 

facilitate the easy visualization of the clusters, they can be grouped. An example 

of cluster visualization is shown in Figure 4.8. In the Figure, the clusters are 

highlighted with a circle. 

 

Figure 4.7. LIFT Path Visualization 

The pattern visualization focuses on showing the patterns of application. It 

was designed to have three areas:  (i) text pattern area, (ii) clone area and 

(iii) graph pattern area. The text pattern is responsible to show the text 

pattern detected in module names and comments; the clone pattern to show the 

list of clones with the similarity measure, and the clone code of all modules in 

the same view; and in a similar way, the graph pattern is responsible for 

showing the list of graph patterns with the similarity measure, as well as to show 

these graphs, highlighting the commonalities. As mentioned in the analysis 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

55 

component, pattern detection module was defined by not implemented yet. 

Thus, the pattern visualization module was only defined but not implemented.  

These visualization modules was developed using the JUNG11 – Java 

Universal Network/Graph Framework, which is a software library written in 

Java that provides a common and extendible language for the modeling, 

analysis, and visualization of data that can be represented as a graph or 

network.  

 

Figure 4.8. LIFT Cluster Visualization 

4.2.5. Understanding Environment Component 

 This component is responsible for integrating the other components, 

containing graphical interfaces for the tool functionalities. 

The graphical interface for parser component is only single screens 

requiring the database connection to be used, the name of legacy system and 

                                                 
11

 http://jung.sourceforge.net 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

56 

source directory or file of legacy system. The code analysis is performed 

automatically, and do not have user interface. Finally, the visualizer component 

has several interactions with the user. 

The main screen of understanding environment has basically three areas: 

(i) the path area in the left, (ii) the graph area at the center, and (iii) the 

details area in the right. Figure 4.9 shows the main screen of the tool. 

 

Figure 4.9. LIFT main screen 

The path area contains a tree structure that shows the complete and the 

minimal paths of the application, and a choice button (index a) provides an easy 

way to switch between them. As explained in the analyzer component, in order 

to avoid infinite loops in recursive or looped back calls, the path sequence stops 

when a module already called in the sequence is called again. 

At the center, the graph area provides the interface and user interaction 

with the visualizations: normal, path or cluster visualizations. The switch 

between the visualizations is performed by choosing a choice button (index b), 

as well as in the switch of paths. Additionally, regardless of the type of 

visualization being performed, the tool allows the user to view and comment 

i 

ii 

iii 

a 

b 

c 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

57 

source code, maintaining both the original and the commented versions. The 

source code visualization is shown in Figure 4.10. Due to confidential 

constraints, the code shown in Figure 4.10 is the same code of Figure 4.3, 

obtained in an internet forum, and is not the real code of the application shown 

in the call graph. 

 

Figure 4.10. LIFT source code visualization 

Finally, the details area shows module details when a module is selected. 

This area includes the name, type and size (LOC) of the module. In addition, the 

area contains the modules relationships, with singular areas to screens, modules 

and entities, and showing the relationship command, such as database access 

commands or module calls commands. At end, the area contains a comment 

area (index c) that is initially loaded with source code comments located in the 

beginning of source code file, extracted in pre-processing. The comments area 

can be edited, in order to provide a place to user insert his comments in addition 

to original code comments. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

58 

The three areas are integrated. When a user chooses a module in the path 

area, it is selected in the graph area and its details are shown in the details area. 

In the same mode, when the user selects a module in the graph area, it is 

selected in the path area and its details are shown in the details area. 

Moreover, the tool works with the concept of code views. Thus, users can 

generate and deal in parallel with new subgraphs from previous graphs. The 

environment allows, for instance, the creation of graphs with only unconnected 

modules, which in general are dead code or batch programs. Other option is to 

generate new graphs with the detected clusters, isolating them from the 

complete application. These views are useful to isolate modules and paths that 

identify application requirements, and have an area that permits to the user 

document the view, with the insertion of view name and view details.  

In addition, the component has search capabilities. Since the source code 

is stored in database, the understanding environment uses its capabilities to 

perform search in the view and module comments, in the original source code 

and in the modified code. 

4.2.6. Summary of Architecture and 
Implementation 

This Section presented the architecture and implementation details of 

LIFT. The tool is a three-tier client-server application developed mainly in 

JAVA. It has four major components (parser, analyzer, visualizer and 

understanding environment), each one with a couple of modules. 

The persistence layer uses SQL ANSI statements, therefore it is database 

independent. The parser was already developed by the Pitang Software Factory 

as a .NET12 standalone application, and was refined and improved to be 

incorporated in LIFT and be the parser component. Currently it contains 2460 

lines of code spread in 4 source files. 

All other modules were developed in JAVA 1.513. Cluster analysis was 

developed based on Mark Newman's edge betweenness clustering algorithm and 

                                                 
12

 http://www.microsoft.com/msdn 
13

 http://java.sun.com/ 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

59 

Minimal Paths was based on Dijkstra algorithm. The Visualizer uses the JUNG, 

Java Universal Network/Graph Framework, to implement visualizations.  

The JAVA implementation of LIFT contains 76 classes, with 787 

methods, divided into 25 packages, containing almost 10.000 line of code (not 

including code comments). Next, we discuss the requirements compliance of the 

tool. 

4.2.7. Requirements Compliance 

LIFT architecture was defined to be compliant with the requirements 

identified in previous chapter. Initially, the architecture was defined aiming 

reusability and maintainability (Requirement NF5), being composed by 

independent components and modules with well defined interfaces. The main 

components are: (i) Parser, (ii) Analyzer, (iii) Visualizer and (iv) Understanding 

Environment. 

The parser component is composed by two independent modules, 

responsible respectively for the parser and pre-processing. The parser module 

can be developed to deal with the target language, or an already developed 

parser can be attached to the tool. This capability allows an easy use of the tool 

with several technologies, since the use of a different input language can be 

achieved only by changing the parser module and extending the pre-processor 

to deal with the parser output. Thus, these capabilities accomplish the 

extensibility (NF2) and integration with other tools (NF3) requirements. In 

special, for a tool to be used as a parser by LIFT, it only needs a pre-processor to 

read its output and to store the information needed by LIFT in the database, or 

the tool itself can store these information, which is basically information about 

the modules and relations, in the database. Furthermore, the tool is not 

restricted to source code. The parser and pre-processor can be extended to deal 

with other kinds of artifacts, such as documents and domain analysis artifacts, 

in order to support a “sandwich” approach [Frakes et al., 1998], with both top-

down and bottom-up activities, satisfying the cross artifact support 

requirement (NF1). In addition, the storage of source code information in a 

database system, instead of maintaining information in memory, is a 

fundamental item to accomplish the scalability requirement (NF4), because it 

permits access to source information in a dedicate server. Furthermore, the size 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

60 

of system does not have impact on the tool, due to the fact that database systems 

have special capabilities to deal with large data amounts. Finally, the access to a 

pre-processed data instead of the structure with all source code statements 

collaborates to reduce computational effort in database accesses and increasing 

the scalability (NF4).  

The analyzer component identifies the system database structure and 

classifies the application modules in interface and business modules, 

accomplishing the requirement of the recovery of the entire system (interface, 

design and database) (FR7). In addition, the trace of requirements from 

interface to database access (F8)(F5) is accomplished by the capabilities of 

minimal path calculations and path generations, and the cluster detection 

allows the possibility of semi-automatic suggestions (F9). 

The visualizer component shows the call graph structure, allowing the 

visualization of entities and relations (F1). It also provides the possibility of 

system visualization and exploration. It shows the call graph with metrics 

support (F6). Furthermore, it has options to show the system in three manners: 

normal, path mode and cluster mode; and provides to the user options to 

configure and interact with the system in each mode (F3). Finally, the 

understanding environment component integrates the other components, 

providing the visualizations, user interactivity, creation of views (F2, F3, F5) 

and search capabilities (F4). 

In spite of some items are not implemented yet, such as the pattern 

detection module, LIFT architecture and implementation fulfill all defined 

requirements. 

In order to better explain the tool functionalities, the next section 

describes one scenario of use of the tool. 

4.3. LIFT Usage 

This section presents LIFT from a user’s point of view. First the code 

(previously illustrated is Figure 4.3) is parsed and inserted in the database 

(Figure 4.4), by the call of a menu command. The Parser screen is shown in 

Figure 4.11. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

61 

The second step performs the code pre-processing. The parsed code is 

read, organized and stored in the database structure used by LIFT. Next, the 

original source files are attached in this structure. In addition, due to the fact 

that the NATURAL source files used to validate the first version of the tool are 

merged in an only file, the second step is performed in two phases. First the 

code is separated in application modules, next the code is uploaded to database. 

These tasks are performed by simple menu commands calls, shown in Figure 

4.12a. 

 

Figure 4.11. Lift Parser 

The third step is the software visualization and exploration.  To start it, 

the user chooses the menu option generate call graph (Figure 4.12b), and select 

the system to be visualized. Thus, the system analysis is performed and the call 

graph is generated and presented to the user in the system main screen. 

As explained in section 4.2 and shown in Figure 4.9, the main screen has 

tree areas. The left area shows full and minimal paths from screens and business 

modules to database modules. In the center the call graph is shown, with the 

mode choice button in bottom, which permits the selection of normal, paths or 

cluster mode. The right area shows selected module information, such as the 

name, size, type, relations, and comments inserted by user or recognized by 

source code comments. 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

62 

  

Figure 4.12. Menu commands to pre-processing and generate graph 

functions 

The first step to system understands is to isolate unconnected nodes, 

which may be identified as dead codes or batch programs. This task is 

performed by right clicking the paths area and choosing submenus “New Graph” 

and “Unconnected Nodes”, as shown in Figure 4.13. These modules are analyzed 

separately from other modules.  

 

Figure 4.13. Popup menu options to generate new graphs 

Next, in a similar way, a new view containing only connected nodes is 

generated. In this view, the user tries to discover high coupled and related 

modules, by cluster detection, as shown previously in Figure 4.8. Therefore, 

clustered modules are separated in a new view and analyzed in separate, in 

a b 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

63 

general resulting in a requirement. This new view is simpler than the complete 

view with all connected modules, providing an easier visualization of a possible 

requirement. Thus, by using the functionalities of path mode and analyzing the 

source code, the user can identify and generate documentation of the 

requirement. This documentation can be made in the description area, present 

in each view. An example of this new view with clustered modules, and the 

description area are shown in Figure 4.14. 

These steps are repeated until the entire application is separated in 

clusters, or no more clusters can be detected. In the last case, the remaining 

modules are analyzed using the path mode, in order to retrieve these 

requirements. 

 

Figure 4.14. LIFT view and requirement description 

4.4. Chapter Summary 

This chapter presented the main aspects of the proposed tool. The 

requirements were defined and the architecture was showed with some 

implementation details. Moreover, we discussed how the architecture and 



Chapter 4 – LIFT: Legacy Information Retrieval Tool 

 

64 

implementation accomplish the requirements. Finally, we illustrated the tool 

usage by the presentation of a use scenario.  

Next Chapter presents the use of the tool in an industrial context, with 

the evaluation by the users and presentation of collected data that show the 

effectivity of the tool. 



 

LIFT Evaluation  

 

This dissertation presented LIFT – Legacy InFormation retrieval Tool, a 

tool that focuses on helping reverse engineering and system understanding. 

However, an important consideration about software tools or theories is how to 

measure their effectiveness. In the context of reverse engineering and system 

understanding, since there is no agreed-upon definition or test of understanding 

[Clayton 1998], it is difficult to claim that program understanding has been 

improved when program understanding itself cannot be measured. 

Despite this difficulty, it is generally agreed that more effective tools could 

reduce the amount of time that maintainers need to spend understanding 

software or that these tools could improve the quality of the programs that are 

being maintained [Müller 2000]. However, Canfora [Canfora and Penta 2007] 

recognized that better empirical evidence is a key factor to achieve the industry 

adoption of reverse engineering tools.  

In this context, we performed an evaluation of LIFT tool, in order to verify 

if its adoption actually provides an effort reduction in reverse engineering and 

system understanding tasks. This chapter presents the LIFT context, some 

software evaluation techniques, and LIFT evaluation with the technique chosen, 

including the results and lessons learned. 

5.1 LIFT Context 

As described in Chapter 4, LIFT is being developed in a context involving 

both academy and industry. Its requirements and architecture definition, 

implementation and evaluation were performed in conjunction with the RiSE 

group, C.E.S.A.R and Pitang Software Factory. Next, LIFT was evaluated in the 

context of Pitang. 

Pitang has acquired experience on reverse engineering and system 

understanding and retrieving knowledge from 1.6 million LOC of 

5 



Chapter 5 – LIFT Evaluation 

 

66 

Natural/ADABAS systems of a financial institution, with subsystems varying 

from 11.000 LOC to 500.000 LOC.  The size of these systems is shown in Figure 

5.1. In these projects, the understanding was performed aiming at the 

reimplementation in other technologies. Thus, Pitang has a processes, methods 

and tools to perform reverse engineering. 

Size of Previous Systems

0

100000

200000

300000

400000

500000

600000

S
ys

te
m
 1

S
ys

te
m
 2

S
ys

te
m
 3

S
ys

te
m
 4

S
ys

te
m
 5

S
ys

te
m
 6

S
ys

te
m
 7

S
ys

te
m
 8

S
ys

te
m
 9

S
ys

te
m
 1

0

S
ys

te
m
 1

1

S
ys

te
m
 1

2

S
ys

te
m
 1

3

Systems

S
y
z
e
 (

L
O

C
)

Size (LOC)

 

Figure 5.1. Size of systems which Pitang performed reverse 

engineering 

At the time that LIFT was drawing near its first release, Pitang received 

seven new projects to perform reverse engineering in the same context: 

understanding NATURAL/ADABAS systems of financial domain. However, in 

these projects the focus changed from understanding to maintenance, instead of 

previous experience on understanding to reimplementation. Thus, the software 

factory formed a new reverse engineering team to work with its projects. The 

team is composed by four developers, with more than ten years of experience 

with NATURAL/ADABAS systems and financial domain. In addition, the 

software factory also provided all infrastructure and staff necessary to the 

activities, such as project and configuration managers and software, quality and 

test engineers. 

The software factory made available one of these projects to be performed 

with LIFT usage. In addition, they also made available historical data to be 

compared with new results. On the other hand, they clearly explained that the 



Chapter 5 – LIFT Evaluation 

 

67 

experiment cannot negatively affect the team productivity, due to time and 

budget constraints. 

In this context, in order to perform LIFT evaluation, we studied some 

evaluation techniques, presented next. 

5.2 Software Evaluation Techniques 

In a recent work [Sjoberg et al., 2007], Sjoberg classified the methods for 

empirical studies in four groups. There are: (i) experimentation, (ii) surveys, 

(iii) case studies, and (iv) action research. 

Experimentation. An experiment is an empirical inquiry that 

investigates causal relations and processes. The identification of causal relations 

provides an explanation of why a phenomenon occurred, while the 

identification of casual processes yields an account of how a phenomenon 

occurred. Experiments are conducted when the investigator wants control over 

the situation, with direct, precise, and systematic manipulation of the behavior 

of the phenomenon to be studied. Thus, its most important application is in 

testing theories and hypotheses. 

Surveys. A survey is a retrospective study of a situation that investigates 

relationships and outcomes. It is useful for studying a large number of variables 

using a large sample size and rigorous statistical analysis. Surveys are especially 

well-suited for answering questions about what, how much, and how many, as 

well as questions about how and why. They are used when control of the 

independent and dependent variables is not possible or not desirable, when the 

phenomena of interest must be studied in their natural setting, and when the 

phenomena of interest occur in current time or the recent past. 

Action research. Action research focuses particularly on combining 

theory and practice. It attempts to provide practical value to the client 

organization while simultaneously contributing to the acquisition of new 

theoretical knowledge. It can be characterized as an iterative process involving 

researchers and practitioners acting together on a particular cycle of activities, 

including problem diagnosis, action intervention, and reflective learning. The 

major strength of action research is, thus, the in-depth and first-hand 

understanding the researcher obtains. Its weakness is the potential lack of 



Chapter 5 – LIFT Evaluation 

 

68 

objectivity on the part of the researchers when they attempt to secure a 

successful outcome for the client organization. 

Case Studies. A case study is an empirical inquiry that investigates a 

contemporary phenomenon within its real-life context, especially when the 

boundaries between phenomenon and context are not clearly evident. So, while 

an experiment deliberately divorces a phenomenon from its context and a 

survey’s ability to investigate the context is limited, the case study aims 

deliberately at covering the contextual conditions. In addition, for Software 

Engineering case studies are also useful  in answering a “which is better” 

question [Kitchenham et al., 1995]. 

The context of LIFT evaluation was presented in the Section 5.1. In this 

context, we do not have control over the situation, thus performs a 

experimentation could provide representative results. In addition, we do not 

have a large sample size, therefore a survey is not applicable. Furthermore, the 

action research involves all software life cycle, and has a potential lack of 

objectivity. Thus, due to the fact that case studies investigate a phenomenon 

within its real-life context, it is best suitable for LIFT evaluation context, and 

was chosen to be the evaluation method. 

5.3 LIFT Evaluation 

The plan of this case study follows the model proposed in [Wohlin et al., 

2000] and organization adopted in [Barros 2001]. According to [Wohlin 2000], 

the process can be divided into main activities. The definition defines the 

experiment in terms of problem, objectives and goals. The planning defines 

the design of experiment, the instrumentation and the threats to the experiment 

are evaluated. The operation monitors the case study against the plan and 

collects measurements, which are analyzed and evaluated in the analysis and 

interpretation. Finally, the results are presented and packaged in the 

presentation and package. 

5.3.1 The Definition 

In order to define the case study, the GQM paradigm [Basili et al., 1994] 

was used to formulate the goal of the study, the questions to be answered, and 

the related metrics that must be collected to answer the questions. 



Chapter 5 – LIFT Evaluation 

 

69 

Goal:  

According to the paradigm, the main objective of this study is: 

To analyze the reverse engineering tool for the purpose of evaluating it 

with respect to the efficiency of the tool from the point of view of researchers 

and software engineers in the context of software reverse engineer projects. 

Questions: 

In addition, the questions to be answers are: 

Q1. Does the tool provide effort reduction in reverse engineering 

projects? 

Q2. Does the tool is scalable to be used in large projects? 

Metrics: 

M1. Productivity: P1 - The amount of lines of code that is understood in 

one work hour; P2 - The amount of program modules that is understood in one 

work hour; P3 - The amount of high level requirements that is understood in 

one work hour. 

M2. Scalability: The relation between the increment of source code 

sizes’ and the increment of time that LIFT consumes to performs a task. 

5.3.2 The Planning 

In their landmark paper, Basili et al. [Basili et al., 1986] emphasize that 

organizations undertaking experiments should prepare an evaluation plan. This 

plan identifies all the issues to be addressed so that the evaluation runs 

smoothly, including the training requirements, the necessary measures, the 

data-collection procedures, and the people responsible for data collection and 

analysis. In addition, the evaluation should also have a budget, schedule, and 

staffing plan separate from those of the actual project. Finally, clear lines of 

authority are needed for resolving the inevitable conflicts of interest that occur 

when a development project is used to host an evaluation exercise. 

Thus, we planned the case study as follows. The planning will be 

described in the future tense, showing the logic sequence between the planning 

and operation. 



Chapter 5 – LIFT Evaluation 

 

70 

Context. The objective of this study is to evaluate the viability of using 

the LIFT tool in reverse engineering projects. The reverse engineering project 

will be conduced in a software factory in an industrial context of reverse 

engineering a financial application. The software factory is experienced with 

reverse engineering projects, with almost 2 million LOC reverse engineered in 

2006 year. Thus, it has its proper process, staff and tools to perform reverse 

engineering. In special, the tools used are the common NATURAL/DATABASE 

environment capabilities. 

Subjects. The subjects of the study will be the software factory staff. The 

reverse engineering activities will be performed by one system engineer. The 

additional roles of the process (quality engineer, configuration manager 

engineer, project manager, among others) will be performed by the usual staff of 

the organization. 

Training. The training of the subjects will be conduced in meetings at 

the organization. The training will be divided in two steps: high level meetings, 

and specific training. The high level meetings will be conduced with all project 

staff, from managers to engineers, and will serves to show the basis and 

requirements of the tool, to acquire management and staff commitment, to 

available if the experiment can produce results and to collect initial feedback of 

the project team. Three meetings will be performed, with two hour each. Next, a 

dedicated training program will be performed with the subject that will use the 

tool. Three lectures will be performed with two hour each. In addition, two use 

days will occur, when the subject will use the tool with previous reverse 

engineered systems loaded.  

Pilot Project. Due to the organization time and budget constraints, in 

addition to the difficult to obtain a small project similar to the project to be 

performed in the case study, a pilot project will not be performed. Nevertheless, 

the subject will use the tool with previous project data loaded, aiming to detect 

problems and improve the planned material and the tool before its use. 

Instrumentation. All subjects will receive a questionnaire (QT1) on 

his/her education and experience, in addition to questions about strong and 

weak points of the tool. The questionnaire is showed in Appendix A. 



Chapter 5 – LIFT Evaluation 

 

71 

Criteria. The focus of this study demands criteria that evaluate the real 

efficiency of the tool. The criteria will be evaluated quantitatively through the 

amount of effort to understand the system, related to system size in LOC, in 

total number of modules, and in the quantity of requirements recovered. In 

addition, the scalability of the system will be evaluated through the execution 

times of tasks. Moreover, the tool will be evaluated using qualitative data from 

questionnaire QT1. In addition, all quantitatively data will be compared with 

two other similar projects. 

Null Hypothesis. This is the hypothesis that the experimenter wants to 

reject with a high significance as possible. In this study, the null hypothesis 

determines that the use of LIFT tool in reverse engineering projects does not 

produce benefits that justify its use and that the subjects have difficulties to use 

the tool. Thus, according to the selected criteria, the following hypothesis can be 

defined: 

H0’: µproductivity by LOC with previous approach > µproductivity by LOC using LIFT  

H0’’: µproductivity by program modules with previous approach > µproductivity by 

program modules using LIFT 

H0’’’: µproductivity by recovered requirement with previous approach > µproductivity 

by recovered requirement using LIFT 

Alternative Hypothesis. This is the hypothesis in favor of which the 

null hypothesis is rejected. In this study, the alternative hypothesis determines 

that the use LIFT tool in reverse engineering projects produces benefits that 

justify its use. Thus, the following hypothesis can be defined. 

H1: µproductivity by LOC with previous approach <= µproductivity by LOC using LIFT  

H2: µproductivity by program modules with previous approach <= µproductivity by 

program modules using LIFT 

H3: µproductivity by recovered requirement with previous approach <= µproductivity 

by recovered requirement using LIFT 

Independent Variables. In a study, all variables in a process that are 

manipulated and controlled are called independent variables. The independent 

variables are the tool, the experience of the subjects, the technology, size and 



Chapter 5 – LIFT Evaluation 

 

72 

domain of the systems to be reverse engineered, the team size and the adopted 

process. 

Dependent Variables. The dependent variables are the variables that 

are objects of the study which are necessary to study to see the effect of the 

changes in the independent variables. The dependent variables are the user 

productivity and tool scalability. The productivity will be measured through the 

effort to understand the system, related to its size, number of modules and 

number of requirements. The scalability will be measured through relations 

between system size and response times. 

Qualitative Analysis. The qualitative analysis aims to evaluate the 

usefulness of the tool and the quality of the material used in the study. This 

analysis will be performed through questionnaire QT1. 

Internal Validity. Considers whether the experimental design is able to 

support conclusions on causality or correlations [Wohlin 2000]. The size of our 

data will be too small to allow meaningful statistical studies, so we will adopt a 

descriptive analysis. 

External Validity. The external validity of the study measures its 

capability to be affected by the generalization, i.e., the capability to repeat the 

same study in other research groups [Wohlin 2000]. In this study, a possible 

problem with external validity is the subjects’ experience, since the experience 

of subjects can interfere in the productivity results.. In addition, organizational 

factors can influence, such as the process used to perform the reverse engineer.  

Finally, the type, the domain and the size of the projects can influence the 

productivity results. Nevertheless, the external validity of the study is 

considered sufficient, since it aims to evaluate the effort reduction with the use 

of tool. In the study, the adopted process, the subject experience and the type 

and the domain of analyzed projects were similar. 

Construct Validity. Construct validity considers whether the metrics 

and models used in a study are a valid abstraction of the real world under study 

[Wohlin 2000]. In this study, one of the most used legacy technology and 

application domain was chosen. In addition, the metrics chosen to evaluate the 

tool efficiency are the metrics used in real projects, such as effort in hours, and 



Chapter 5 – LIFT Evaluation 

 

73 

program size based on number of lines of codes, program modules and system 

requirements. 

Conclusion Validity. This validity is concerned with the relationship 

between the treatment and the outcome, and determines the capability of the 

study to generate conclusions [Wohlin 2000]. This conclusion will be drawn by 

the use of descriptive analysis. 

5.3.3 The Project used in the Case Study 

The project used in the case study was to perform reverse engineering of a 

NATURAL/ADABAS system for a financial institution. The reverse engineering 

was performed by one system engineer. He had just the source code of the 

system, without any documentation (requirements and design specification, 

etc). The output is the project documentation.  

5.3.4 The Instrumentation 

Selection of Subjects. For the execution of the study, one system 

engineer of the Pitang Software factory was selected. The selection was random, 

where the first available engineer was chosen. 

 Data Validation. In this study, due to the fact that only one project will 

use the tool, descriptive statistics will be used to analyze the data set, instead of 

statistical analysis. It may be used before carrying out hypothesis testing, in 

order to better understand the nature of the data and to identify abnormal or 

false data points [Wohlin 2000]. 

Instrumentation. Before the case study can be executed, all 

instruments must be ready. It includes the experimental objects, tools and the 

questionnaires. 

5.3.5 The Operation 

Experimental Environment. The case study was conduced during 

Abril-June 2007, at Pitang Sofware factory. The case study was performed 

directly by one engineer, and indirectly by support team (quality engineer, 

configuration manager engineer, project manager, among others).  

Training. The training was performed according to plan: 6 hours of high 

level meetings, divided in three meetings among three weeks; 6 hours of subject 



Chapter 5 – LIFT Evaluation 

 

74 

specific training, divided in three lectures among three days; and 16 hours of 

tool usage by the subject. All training meetings and lectures occurred in the 

Pitang dependencies. In special, the 16 hours of tool usage was performed in the 

company production environment. 

The reverse engineering process. The subject used the habitual 

process of the organization which was used in the two sibling projects. 

Costs. Since the subject of the case study was a software engineer of 

Pitang Software Factory, and the environment for execution was the 

organization infra-structure, the cost for the study was basically for planning 

and operating. The planning for the study was about three months. During this 

period, it was developed two versions of the planning presented in this 

dissertation. 

As previously defined, the study was performed in three steps: initially, 

high level meetings were conduced (April, 2007), next the subject was trained 

(April – May, 2007), and finally, he performed the reverse engineering project  

(May – June, 2007). 

5.3.6 The Analysis and Interpretation 

Training Analysis. The training was performed as planned. The 

subjects and all people involved (Pitang reverse engineer team) considered the 

training very good. They considered that the initial high level meetings were 

very important, to achieve management involvement and team motivation to 

use the tool, instead of traditional tools used by engineers. In addition, the 

subject who directly used the tool classified the dedicated training program as 

good and sufficient to the tool understanding. Finally, he considered that the 

two days were essential to clarify some questions. 

Quantitative Analysis. The analysis compare three projects, one that 

used LIFT tool and two other similar projects. We call this project as LIFT 

Project and the projects that not used the tool as Project 1 and Project 2.   

As explained in the Context, the three projects are similar. They use the 

same technology (NATURAL/ADABAS) and application domain (financial), and 

were performed by system engineers who have almost the same experience with 

both the technology and application domain. In addition, the projects are from 



Chapter 5 – LIFT Evaluation 

 

75 

the same customer, which provide similar development patterns and 

complexity. Furthermore, they formed a new development team, not 

familiarized with the specific process used to understand the systems for 

maintenance. On other hand, the engineer of Project 2 had a little advantage, 

due to the fact that he is the only subject that already worked in previous 

projects of the company and is most familiarized with organization process in 

general. 

The project data was collected from two perspectives: Productivity and 

Scalability. The analyses were performed using descriptive statistics. 

Productivity. The productivity data was obtained from the organization 

internal software, which the engineers report the start and end time of each 

activity.  In addition, the other information was obtained from final system 

documents. Table 5.1 shows the comparison of productivity measures. 

 

Table 5.1. Projects Characteristics 

Lines / Hour Productivity: The engineer that performed the Project 2 was 

more familiar with the organization process and context. Thus, was expected 

that he produced a better productivity than the other engineers, what was 

confirmed in comparison with the Project 1. In addition, due to the fact that the 

tool introduction changes the way that users works for more than 20 years, it 

was expected that the first project would not present much better results than 

the other ones. However, the productivity of LIFT Project was much higher than 

the productivity of the other projects: 66% higher than Project 1 and 41% higher 

than Project 2. This productivity rejects the null hypothesis H0’, which validates 

the alternative hypothesis H1: µproductivity by LOC with previous approach <= 

µproductivity by LOC using LIFT. This implies that the tool aids in effort reduction 

of reverse engineering tasks in system understanding, considering the size of 

systems in number of lines of code. 



Chapter 5 – LIFT Evaluation 

 

76 

Modules / Hour Productivity: Instead of Project 2 has almost twice lines 

of code than Project 1, the number of modules identified in Project 2 was lower 

than number of modules of Project 1. It can indicate that in the analyzed 

systems, there is no relation between system module number and system lines 

of code. In fact, one system can have higher modularity than other, due to 

several causes. Despite of these differences, the LIFT Project presented the 

major number or modules identified. Additionally, the productivity of LIFT 

Project concerning the effort by number of modules was higher than the 

productivity of the other projects: almost 12% higher than Project 1 and 127% 

higher than Project 2. This productivity rejects the null hypothesis H0’’, which 

validates the alternative hypothesis H2: µproductivity by program modules with 

previous approach <= µproductivity by program modules using LIFT. It reinforce that 

the tool aids in effort reduction of reverse engineering tasks in system 

understanding, considering the size of systems in number of modules. 

High Level Requirements / Hour Productivity: Instead of Project 2 has 

an almost twice line of code than Project 1, the number of high level 

requirements identified in Project 2 was lower than the numbers of high level 

requirements of Project 1. It can indicate that in the analyzed systems, there is 

no relation between the number of requirements identified and system lines of 

code. In fact, a requirement can need more lines of code to be implemented, or 

design or implementation decisions can produce different implementation of 

same requirement. Despite of these differences, the LIFT Project presented the 

major number of high level requirements recovered. Additionally, the 

productivity of LIFT Project concerning the effort by number of high level 

requirements recovered was the same of Project 1 and 167% higher than Project 

2. This productivity rejects the null hypothesis H0’’’, which validates the 

alternative hypothesis H3: µproductivity by recovered requirement with previous 

approach <= µproductivity by recovered requirement using LIFT. It indicates that the 

tool aids in effort reduction of reverse engineering tasks in system 

understanding, considering the number of requirements recovered. 



Chapter 5 – LIFT Evaluation 

 

77 

Conclusion: Even with the analysis not being conclusive, the 

experimental study indicates that the tool reduces the effort in reverse 

engineering tasks in system understanding.  

Scalability Analysis. According to [Bondi 2000], “scalability is a 

desirable property of a system, a network, or a process, which indicates its 

ability to either handle growing amounts of work in a graceful manner, or to 

be readily enlarged”. Due to the fact that the tool was projected and 

implemented to be used in large systems context, we studied its scalability, i.e.,  

its ability to handle growing amounts of work in a graceful manner, by collection 

and analysis of tasks execution times, according to the grow of input systems. In 

addition to the project in that LIFT tool was used to perform reverse 

engineering, the Pitang software factory made available the source code of 

Project 2, to allow execution times comparing. The source code of Project 1 

could not be evaluated due to confidential constraints. 

The scalability evaluation was performed using two PC Desktops using 

Windows operation system. Running in a Core Duo/2GB Ram workstation and 

accessing a Pentium 4/512MB Ram database server, the tool performed tasks in 

the times shown in Table 5.2. 

 

Table 5.2. LIFT execution times 

Parse and Preprocessing code are slow tasks, but we consider that this 

time duration does not harm the tool’s performance because these tasks occur 

only once in each system. In addition, Minimal Paths Calculation, Analysis and 

Graph Creation tasks take a small time, but are performed few times, that is, 

only when the application runs and the system is chosen. In addition, Cluster 

Detection is a task that takes little time, in general from 1 to 20 seconds 

depending on the number of clusters, modules and edges involved. Finally, the 

operations of graph manipulation, view creations and load details are instant 



Chapter 5 – LIFT Evaluation 

 

78 

tasks, with times imperceptibles by user, which provides a good usability and 

user experience. 

To better understanding these data, we measured the increase rate of 

execution times, in order to verify the relation between the systems size and 

execution times. This rate is showed in Figure 5.2. The dotted line represents 

the increase hate of the system size, for better visualization. 

Conclusion: The analysis shows that times execution was performed 

better than expected. The increase rate between the two projects was about 1,6 

(illustrated by a red line). Thus, it was expected that the times were performed 

at least with the same rate. Nevertheless, only the parse time was performed 

with a higher rate, and all other times was performed with lower rates. This 

result indicates that the parser should be verified in order to decrease its 

execution times. However, the other tasks are performed with excellent 

execution times. 

 

Figure 5.2. Size and execution times increase rates 

Qualitative Analysis. After concluding the quantitative analysis of the 

experiment, the qualitative analysis was performed. This analysis is based on 

the answers defined for the QT1 presented in Appendix A. 

Usefulness of the Tool. The subject reported that the tool was useful 

to perform the reverse engineering project. He reported that “the tool provided 

some grateful help, due the fact that the documentation of existent mainframe 

systems is almost null, requiring a support system like LIFT to build a 

Increase Rate

0

0,5

1

1,5

2

Size (KLOC) Parse Time

(s)

Pre-

Processing

Time (s)

Minimal

Paths Time

(s)

Full Analysis

and Graph

Creation (s)

R
a
te Increase Rate



Chapter 5 – LIFT Evaluation 

 

79 

consistent documentation”, and that “with the LIFT tool it became easy to 

generate system documentation needed to system maintenance, allowing a 

better visibility to legacy system”. In addition, without having access to 

comparison data, he estimated that the use of LIFT reduced in almost 20% his 

effort in reverse engineering tasks. On other hand, he pointed out that the main 

problem of tool is the time spent to full analysis and graph creation (in about 40 

seconds). Moreover, some improvements was discussed, such as to include in 

the system the reports generated by a commercial tool, and document automatic 

generation from view and modules details. 

Quality of the Material. The subject considered the training sufficient 

for use the tool. In addition, he indicated that the presence of the experimenter 

in the project context was important to encourage the tool usage, due to the 

difficulty of change the way of work followed in his 22 years of activities. 

  Additional Qualitative Analysis. The experimenter collected 

some informal user considerations about the tool. 

Users agree that minimal paths visualization is very useful in knowledge 

recovery for re-implementation, because the main objective is to know the main 

application execution path, instead of details. However, the visualization of 

complete paths is desired in knowledge recovery for maintenance, because of 

the need for a map of the entire application when maintenance tasks are 

performed. Additionally, they agree that the use of views to isolate possible 

requirements and the existence of “Path Mode” are very useful to deal with large 

systems, allowing clean visualizations of large systems. 

Another important consideration is that users reported that cluster 

analysis is useful to identify and isolate related modules, but the applicability of 

this option was limited to identify the high level requirements groups because 

the NATURAL/ADABAS environment has some features that maintain and 

show to the user a list of the application entry points. However, cluster analysis 

was useful to identify some of high level requirements not included in this list, 

as well as clusters and sub-requirements inside them. 

5.4 Lessons Learned 



Chapter 5 – LIFT Evaluation 

 

80 

After concluding the experimental study, we identified some aspects that 

should be considered in order to repeat the experiment, since they were seen as 

limitations of the first execution. 

Training. Instead of the subject claimed that the training program was 

good, some lectures improvements are necessary. In addition, some questions 

that still remained were clarified by the experimenter because he was allocated 

in the project context. Thus, in order to eliminate the need of this allocation, an 

online help should be included in the tool, and some kind of user support should 

be provided, such as e-mail contact. 

Questionnaire. The questionnaire should be reviewed in order to 

collect more precise data related to user feedback, such as the data presented in 

the Additional Qualitative Analysis. Moreover, a possible improvement can be 

to collect data about specific tool requirements. 

5.5 Chapter Summary 

This chapter presented the LIFT evaluation context, and the definition, 

planning, operation, analysis, interpretation and packaging of the case study 

that evaluated the viability of the tool. The study analyzed the possibility of 

subjects using the tool to achieve effort reduction in reverse engineering and 

system understanding tasks. The study also analyzed the tool scalability and 

usability. 

 Even with the reduced number of projects using the tool (one), the 

analysis has shown that LIFT use can help in effort reduction of reverse 

engineering and system understanding tasks. In addition, it showed that the 

system is scalable to be used with larger software systems. Finally, the subject 

evaluated the tool usability as good. 

In addition, the study also identified some directions for improvements. 

However, the study’s repetition in a different context should be considered, to 

identify more points for improvements. 

The next chapter will present the conclusions of this work, its main 

contribution and directions for future works. 



 

Conclusions 

 

Software reengineering has been considered as a realistic and cost 

effective way of reuse knowledge embedded in legacy systems, instead of put it 

off and rebuild the systems from scratch. As discussed in Chapters 2 and 3, 

there are several approaches and tools which perform reengineering and reverse 

engineering, and both academy and industry are trying new ways, such as aspect 

and data mining approaches. However, there are some flaws in these, in special 

in recovery entire system requirements, in deal with large systems and with 

tools adoption. 

In this sense, in order to solve the identified problems and to reduce the 

effort of reverse engineering activities, this work presented the LIFT – Legacy 

InFormation retrieval Tool. The tool is based on an extensive review of 

approaches and current tools, in addition to an experienced reverse engineering 

group expertise. 

6.1. Research Contributions 

The main contributions of this work can be split into the following aspects: 

i. the extension of a survey on the reengineering approaches; ii. the 

presentation of a more specific survey on the state-of-the-art and practice in 

software reverse engineering tools; iii. the formalization and definition of 

requirements, architecture, and implementation of a reverse engineering tool; 

and iv. a case study which evaluated the viability of the utilization of the tool in 

a reverse engineering project. 

• The Key Developments in the Field of Software 

Reengineering. Initially, the goal was to understand the software 

reengineering area, the origins of its concepts and ideas, processes 

and methods, and future directions for research and developments, 

among others, in order to obtain a big picture of the area. 

6 



Chapter 6 – Conclusions 

 

82 

• A Survey on Reverse Engineering Tools. Next, based on this 

detailed study, the reverse engineering tools was investigated. 

Through this study, eight reverse engineering tools were analyzed 

and offered the base to define an initial set of requirements for an 

effective reverse engineering tool. 

•  The LIFT – Legacy InFormation retrieval Tool. After 

concluding this study, we defined the LIFT, which is a tool for 

reverse engineering and system understand. The tool requirements 

were based on the study and expertise of experienced groups of 

reverse engineering and software reuse. Thus, the architecture was 

defined and the tool implemented. 

• A Case Study. In order to evaluate the tool usage viability, a case 

study was performed in an industrial context. The study analyzed 

the tool as quantitatively as well as qualitatively and presented 

findings that the tool usage can reduce effort in reverse engineering 

tasks. 

6.2. Related Work 

In the literature, some related work could be identified during this 

research. Chapter 3 presented eight reverse engineering tools which are close to 

this work. However, there are key differences between this work and the others. 

Initially, this work establishes six main functional requirements that none of the 

related tools supported in conjunction. In addition, we defined new 

requirements not attended by any of the related tools, such as cluster analysis, 

database induction and detection of minimal paths from interface to database 

modules. Finally, this work achieved the scalability requirement by a new way to 

deal with source code, which is its entire parse and storage in database systems, 

instead of approaches that maintain a lot of data in volatile memory and harms 

the tool scalability. 

6.3. Future Work 

Due to time constraints imposed on M.Sc dissertation, this work can be 

seen as the first step towards the full vision of an efficient reverse engineering 

tool. Thus, the following issues should be investigated as future work: 



Chapter 6 – Conclusions 

 

83 

Plug-ins for other input languages. The current version of LIFT 

supports the reverse engineering of NATURAL/ADABAS applications. 

Nevertheless, it was designed to be expanded to be used with several 

technologies. Thus, plug-ins should be developed containing parsers that deal 

with other languages. 

Automatic Documents Generation. The tool allows the creation of 

system documents from view and modules description. Furthermore, it can be 

extended to create these documents in an automatic way, using templates 

defined by the user. In addition, a mechanism to trace the recovered documents 

to the source code is desirable, in order to maintain documents always updated. 

Metrics and Reports. Metrics achieve an important role in software 

engineering. They allow the engineers to define quality goals, measure them, 

and to monitor the accomplishment of these goals, and can be used to measure 

different aspects such design and code. Thus, the definition of a set of metrics, 

and reports related to its, can be helpful in reverse engineering tasks. In this 

work, we used previous metrics defined by the software engineering team and 

generated by a commercial tool, and these can be a starting point for definition 

of reverse engineering metrics and generation the related reports in the tool. 

Clone Detection. Reuse through copying and pasting source code is 

common practice. So-called software clones are the results. Sometimes these 

clones are modified slightly to adapt them to their new environment or purpose. 

Several authors report 7 percent to 23 percent code duplication [Baker 1995], 

[Kontogiannis et al., 1996], [Bruno et al., 1997]; in one extreme case, 59 percent 

was reported [Ducasse et al., 1999]. Thus, if a reverse engineering tool can 

automatically detect clones and prevent the user to analyze clone codes more 

than once, the effort for understanding can be significantly reduced. 

Case Studies. This dissertation presented the definition, planning, 

operation, analysis, interpretation, presentation and packaging of a case study. 

However, new studies in different context, including more subjects, other 

domains and technologies are still necessary in order to calibrate the proposed 

tool and the case study plan. 



Chapter 6 – Conclusions 

 

84 

6.4. Academic Contributions 

The knowledge developed during this work resulted in the following 

publications: 

• [Brito et al., 2007b] Brito, K. S.; Garcia, V. C.; Lucrédio, D.;  A.; 

Almeida, E. S.; Meira, S. R. L. LIFT: Reusing Knowledge from 

Legacy Systems, In the Brazilian Symposium on Software 

Components, Architectures and Reuse (SBCARS), Campinas, São 

Paulo, Brazil, 2007. 

• [Brito et al., 2007a] Brito, K. S.; Garcia, V. C.; Almeida, E. S.; Meira, 

S. R. L. A Tool for Knowledge Extraction from Source Code, 21st 

Brazilian Symposium on Software Engineering, Tools Session, João 

Pessoa, Paraíba, Brazil, 2007. 

Besides these published papers, the work presented in [Brito 2007b] was 

invited to be re-submitted in a extended version to the Journal of Universal 

Computer Science (JUCS), Special Issue on Software Components, 

Architectures and Reuse. 

6.5. Concluding Remarks 

Currently, companies stand at a crossroads of competitive survival, and 

information systems are no longer an additional item, but an important part of 

the business, with lots of information about the business embedded in it. Thus, 

the knowledge about the code is crucial for the companies, and understanding 

their systems for maintenance or for technological upgrade is an essential task.  

In this context, this work presented the LIFT tool for reverse engineering 

and system understanding. The tool was based on an extensive review of 

available reengineering approaches as well as a survey about reverse 

engineering tools, in addition to a experienced group expertise. Additionally, the 

tool was evaluated in an industrial project of reverse engineering 210KLOC 

NATURAL/ADABAS system of a financial institution, which analyzed it both 

quantitatively and qualitatively and presented findings that suggest that the tool 

reduces effort in reverse engineering activities. 



 

ppendix A. 
Questionnaire used 

in the Case Study 

QT1 – INDIVIDUAL QUESTIONNAIRE FOR THE PARTICIPANTS 

OF THE EXPERIMENT 
 

 

1) What is your experience in Software Development (in years)? 

 

 

2) What is your experience in Reverse Engineering and legacy system 

understanding projects (in years)? 

 

 

3) What is your experience in the Application Domain of the application 

used in the experiment (in years)? 

 

 

4) What is your experience with the technology used in the experiment 

(in years)? 

 

 

5) What is your familiarity with the process used in the organization (use 

the scale from 1 to 5, which 1 is unfamiliar, and 5 is greatly familiar)? 

 

 

6) Which difficulties did you have in using the tool? 

 

 

 

 

 

A 



Appendix A - Questionnaire used in the Case Study 86 

7) What do you think about the cluster detection capabilities of the tool? 

 

 

 

 

 

8) What do you think about the minimal paths calculation of the tool? 

 

 

 

 

 

9) What were the key points that you think that aid in the reverse 

engineering tasks? 

 

 

 

 

 

10) What difficulties did you find using the tool? 

 

 

 

 

 

11) Which improvements would you suggest for the tool? 

 

 

 

 

 

12) What were the biggest difficulties you had to conclude the project? 

 

 

 

 

 

13) Could you estimate (in %) the effort reduction provided by the tool 

usage? 



Appendix A - Questionnaire used in the Case Study 87 

 

 

14) Other comments 

 

 

 

 

 

 



 

eferences 

Ahuja, R. K., Mehlhorn, K., Orlin, J. B. and Tarjan, R. E. (1990). "Faster 

Algorithms for the Shortest Path Problem." Journal of the ACM (JACM) 

Vol.(37), No. 2, p. 213-223. 

Almeida, E. S. (2007), "The RiSE Process for Domain Engineering", Ph.D. 

Thesis, Federal University of Pernambuco, Recife, March, 2007. 

Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C. and Meira, S. R. d. L. 

(2004). "RiSE Project: Towards a Robust Framework for Software 

Reuse". IEEE International Conference on Information Reuse and 

Integration (IRI), Las Vegas, USA, p. 48-53. 

Alvaro, A., Almeida, E. S. and Meira, S. R. L. (2006). "A Software Component 

Quality Model: A Preliminary Evaluation". 32nd IEEE EUROMICRO 

Conference on Software Engineering and Advanced Applications (SEAA), 

Component-Based Software Engineering Track, Cavtat/Dubrovnik, 

Croatia, p. 28-35. 

Alvaro, A., Lucrédio, D., Garcia, V. C., Almeida, E. S., Prado, A. F. and Trevelin, 

L. C. (2003). "Orion-RE: A Component-Based Software Reengineering 

Environment". 10th Working Conference on Reverse Engineering 

(WCRE), Victoria - British Columbia - Canada, p. 248-257. 

Aversano, L., Cimitile, A., Canfora, G. and Lucia, A. D. (2001). "Migrating 

Legacy Systems application to the Web". Proceedings of 5th European 

Conference on Software Maintenance and Reengineering, Lisbon, 

Portugal, p. 148-157. 

Baker, B. S. (1995). "On finding duplication and near-duplication in large 

software systems". Proceedings of the Second Working Conference on 

Reverse Engineering, IEEE Computer Society, p. 86. 

R 



References 89 

Barros, M. O. (2001), "Project Management based on Scenarios: A Dinamic 

Modeling and Simulation Approach (in portuguese)", Ph.D. Thesis, 

Universidade Federal do Rio de Janeiro, 2001. 

Basili, V. R., Caldiera, G. and Rombach, H. D. (1994). "The Goal Question 

Metric Approach". Encyclopedia of Software Engineering, p. 528-532. 

Basili, V. R., Selby, R. W. and Hutchens, D. H. (1986). "Experimentation in 

Software Engineering." IEEE Transactions on Software Engineering 

Vol.(12), No. 7, p. 733-743. 

Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R. and 

Wallnau, K. (2000). Market Assessment of Component-Based Software 

Engineering, CMU/SEI - Carnegie Mellon University/Software 

Engineering Institute. pg 41. 

Bass, L., Clements, P. and Kazman, R. (1997). "Software Architecture in 

Practice", Addison-Wesley. 

Bayer, J. (2000). "Towards Engineering Product Lines Using Concerns". 

Workshop on Multi-Dimensional Separation of Concerns in Software 

Engineering (ICSE'2000), Limerick, Ireland, p. (position Paper). 

Berghel, H. L. and Sallach, D. L. (1984). "Measurements of program similarity 

in identical tasking environments." SIGPLAN notices Vol.(19), No. 8, p. 

65-76. 

Bianchi, A., Caivano, D., Marengo, V. and Visaggio, G. (2003). "Iterative 

Reengineering of Legacy Systems." IEEE Transactions on Software 

Engineering Vol.(29), No. 3, p. 225-241. 

Bianchi, A., Caivano, D. and Visaggio, G. (2000). "Method and Process for 

Iterative Reengineering of Data in a Legacy System". Proceedings of the 

Seventh Working Conference on Reverse Engineering (WCRE'00), 

Brisbane, Queensland, Australia, IEEE Computer Society, p. 86-97. 

Bondi, A. B. (2000). "Characteristics of scalability and their impact on 

performance". Proceedings of the 2nd International Workshop on 

Software and Performance, Ottawa, Ontario, Canada, ACM, p. 195-203. 



References 90 

Boyle, J. M. and Muralidharan, M. N. (1984). "Program Reusability through 

Program Transformation." IEEE Transactions on Software Engineering 

Vol.(10), No. 5, p. 574-588. 

Brito, K. S., Garcia, V. C., Almeida, E. S. and Meira, S. R. L. (2007a). "A Tool for 

Knowledge Extraction from Source Code". 21st Brazilian Symposium on 

Software Engineering (Tools Session), Campina Grande, Brazil, p. 93-99. 

Brito, K. S., Garcia, V. C., Lucrédio, D. A., Almeida, E. S. and Meira, S. R. L. 

(2007b). "LIFT: Reusing Knowledge from Legacy Systems". Brazilian 

Symposium on Software Components, Architectures and Reuse, 

Campinas, Brazil, p. 75-88. 

Brooke, C. and Ramage, M. (2001). "Organisational Scenarios and Legacy 

Systems." International Journal of Information Managements Vol.(21), 

No., p. 365-384. 

Broy, M. (2006). "The ‘Grand Challenge’ in Informatics: Engineering Software-

Intensive Systems." IEEE Computer Vol.(39), No. 10, p. 72-80. 

Bruno, L., Daniel, P., Jean, M., Ettore, M. M. and John, H. (1997). "Assessing 

the Benefits of Incorporating Function Clone Detection in a Development 

Process". Proceedings of the International Conference on Software 

Maintenance, IEEE Computer Society, p. 314. 

Burégio, V. A. A. (2006), "Specification, Design, and Implementation of a Reuse 

Repository", Federal University of Pernambuco, August, 2006. 

Caldiera, G. and Basili, V. R. (1991). "Identifying and Qualifying Reusable 

Software Components." IEEE Computer Vol.(24), No. 2, p. 61--71. 

Canfora, G. and Penta, M. D. (2007). "New Frontiers of reverse Engineering". 

Future of Software Engineering (FOSE), IEEE Computer Society, p. 326--

341. 

Chikofsky, E. J. and Cross, J. H. (1990). "Reverse Engineering and Design 

Recovery: A Taxonomy." IEEE Software Vol.(1), No. 7, p. 13-17. 

Clayton, R., Rugaber, S. and Wills, L. (1998). "On the knowledge required to 

understand a program". Proceedings of the 5th Working Conference on 

Reverse Engineering, Honolulu, Havaii, USA, p. 69-68. 



References 91 

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. 

and Stafford, J. (2004). Documenting Software Architectures: Views and 

Beyond, Addison-Wesley: 512. 

Clements, P. and Northrop, L. (2001). "Software Product Lines: Practices and 

Patterns", Addison-Wesley. 

Demeyer, S., Tichelaar, S. and Ducasse, S. (2001). FAMIX 2.1 - The FAMOOS 

information exchange model. Technical Report, University of Bern. 

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs." 

Numerische Mathematik Vol.(1), No. 1, p. 269-271. 

Ducasse, S., Rieger, M. and Demeyer, S. (1999). "A Language Independent 

Approach for Detecting Duplicated Code". Proceedings of the IEEE 

International Conference on Software Maintenance, IEEE Computer 

Society, p. 109. 

El-Ramly, M., Stroulia, E. and Sorenson, P. (2002a). "Mining System-User 

Interaction Traces for Use Case Models". Proceedings of the 10 th 

International Workshop on Program Comprehension, p.  

El-Ramly, M., Stroulia, E. and Sorenson, P. (2002b). Recovering software 

requirements from system-user interaction traces. Proceedings of the 

14th International Conference on Software Engineering and Knowledge 

Engineering. Ischia, Italy, ACM Press: 447-454. 

Erlikh, L. (2000). "Leveraging Legacy System Dollars for E-Business." IT 

Professional Vol.(2), No. 3, p. 17-23. 

Ezran, M., Morisio, M. and Tully, C. (2002). "Practical Software Reuse". 

Springer, p. 374. 

Favre, J.-M. (2001). "GSEE: a Generic Software Exploration Environment". 

Proceedings of the International Workshop on Program Comprehension 

(IWPC), Toronto, Ont., Canada, p. 233. 

Frakes, W., Prieto-Diaz, R. and Fox, C. (1998). "DARE: Domain analysis and 

reuse environment". Annals of Software Engineering 5, p. 125-141. 

Gall, H. and Klösch, R. (1994). "Program transformation to enhance the reuse 

potential of procedural software". Proceeding of the ACM Symposium on 



References 92 

Applied Computing (SAC'1994), Phoenix, Arizona, United States, p. 99-

104. 

Garcia, V. C. (2005), "Phoenix: An Aspect Oriented Approach for Software 

Reengineer(in portuguese). M.Sc Thesis." Federal University of São 

Carlos, São Carlos, Brazil, March/2005. 

Garcia, V. C., Lucrédio, D., Durão, F. A., Santos, E. C. R., Almeida, E. S., Fortes, 

R. P. M. and Meira, S. R. L. (2006). "From Specification to the 

Experimentation: A Software Component Search Engine Architecture". 

9th International Symposium on Component-Based Software 

Engineering (CBSE), Sweden, Lecture Notes in Computer Science 

(LNCS), Springer-Verlag, p. 82-97. 

Garcia, V. C., Lucrédio, D., Prado, A. F. d., Alvaro, A. and Almeida, E. (2004). 

"Towards an Effective Approach for Reverse Engineering". Proceedings 

of 11th Working Conference on Reverse Engineering (WCRE), Delft, 

Netherlands, p. 298-299. 

Girvan, M. and Newman, M. E. J. (2002). "Community Structure in Social and 

Biological Networks." Proceedings of the National Academy of Sciences 

of USA Vol.(99), No. 12. 

Grier, S. (1981). "A tool that detects plagiarism in Pascal programs." SIGSCE 

Bulletin Vol.(13), No. 1. 

Harel, D. (1992). "Biting the silver bullet: toward a brighter future for system 

development." IEEE Computer Vol.(25), No. 1, p. 8-20. 

Heineman, G. T. and Councill, W. T. (2001). "G. T. Heineman, W. T. Councill, 

Component-Based Software Engineering", Addison-Wesley. 

Jacobson, I. and Lindstrom, F. (1991). Reengineering of old systems to an 

object-oriented architecture. Proceedings of the Object-Oriented 

Programming Systems, Languages and Applications (OOPSLA'91): 340-

350. 

Kapoor, R. V. and Stroulia, E. (2001). "Mathaino: Simultaneous Legacy 

Interface Migration to Multiple Platforms". 9th International Conference 

on Human-Computer Interaction, New Orleans, LA, USA, p. 51-55. 



References 93 

Keller, R. K., Schauer, R., Robitaille, S. e. and Pag\'e, P. (1999). Pattern-based 

reverse-engineering of design components. Proceedings of the 21st 

International Conference on Software Engineering (ICSE'99): 226-235. 

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. G. 

(2001). "Getting Started with AspectJ." Communications of ACM 

Vol.(44), No. 10, p. 59-65. 

Kitchenham, B. A., Pickard, L. M. and Pfleeger, S. L. (1995). "Case Studies for 

Method and Tool Evaluation." IEEE Software Vol.(12), No. 4, p. 52-62. 

Kontogiannis, K. A., Demori, R., Merlo, E., Galler, M. and Bernstein, M. (1996). 

Pattern matching for clone and concept detection. Reverse engineering, 

Kluwer Academic Publishers: 77-108. 

Kruchten, P., Obbink, H. and Stafford, J. (2006). "The Past, Present, and Future 

of Software Architecture." IEEE Software Vol.(23), No. 02, p. 22-30. 

Krueger, C. W. (1992). "Software Reuse." ACM Computing Surveys Vol.(24), No. 

2, p. 131-183. 

Lammel, R. and Verhoef, C. (2001). "Cracking the 500-language problem." 

IEEE Software Vol.(18), No. 6, p. 78-88. 

Landau, E. (1909). "Handbuch der Lehre von der Verteilung der Primzahlen". 

The University of Michigan Historical Mathematics Collection, p. 908-

961. 

Lanza, M. (2003). "CodeCrawler - lessons learned in building a software 

visualization tool". Proceedings of European Conference on Software 

Maintenance and Reengineering, p. 409-418. 

Lanza, M. and Ducasse, S. p. (2003). "Polymetric Views-A Lightweight Visual 

Approach to Reverse Engineering." IEEE Transactions on Software 

Engineering Vol.(29), No. 9, p. 782-795. 

Lee, E., Lee, B., Shin, W. and Wu, C. (2003). A Reengineering Process for 

Migrating from an Object-oriented Legacy System to a Component-based 

System. Proceedings of the 27th Annual International Computer 

Software and Applications Conference (COMPSAC). 



References 94 

Lehman, M. M. (1980). "Programs, life cycles, and laws of software evolution." 

Proceedings of the IEEE Vol.(68), No. 9, p. 1060 -1076. 

Lehman, M. M. and Belady, L. A. (1985). "Program Evolution Processes of 

Software Change", London: Academic Press. 

Lientz, B. P., Swanson, E. B. and Tompkins, G. E. (1978). "Characteristics of 

Application Software Maintenance." Communications of the ACM 

Vol.(21), No. 6, p. 466 - 471. 

Lippert, M. and Lopes, C. V. (2000). "A study on exception detecton and 

handling using aspect-oriented programming". Proceedings of the 22nd 

International Conference on Software Engineering (ICSM), Limerick, 

Ireland, p. 418-427. 

Lisboa, L. B., Garcia, V. C., Almeida, E. S. d. and Meira, S. L. (2007). "ToolDAy  

A Process-Centered Domain Analysis Tool". 21st Brazilian Symposium on 

Software Engineering, Tools Session, João Pessoa, Brazil, p. (to appear). 

Liu, K., Alderson, A. and Qureshi, Z. (1999). "Requirements Recovery from 

Legacy Systems by Analysing and Modelling Behaviour". Proceedings of 

IEEE International Conference on Software Maintenance (ICSM '99), p.  

Madhavji, N. H. (1985). "Compare: A Collusion Detector for Pascal." T.S.I - 

Technique et Science Informatiques Vol.(4), No. 6, p. 489-498. 

Mascena, J. C. C. P. (2006), "ADMIRE: Asset Development Metric-based 

Integrated Reuse Environment", M.Sc. Dissertation, Federal University 

of Pernambuco, May, 2006. 

Mayrhauser, A. v. and Vans, A. M. (1997). "Program Understanding Needs 

during Corrective Maintenance of Large Scale Software". Proceedings of 

International Computer Software and Applications Conference (ICSA), p. 

630-637. 

McIlroy, M. D. (1968). "Mass Produced Software Components". NATO Software 

Engineering Conference Report, Garmisch, Germany, p. 79-85. 

Meyer, B. (1997). "Object-Oriented Software Construction", Prentice-Hall, 

Englewood Cliffs. 



References 95 

Moore, M. M. and Moshkina, L. (2000). "Migrating Legacy User Interfaces to 

the Internet: Shifiting Dialogue Initiative". Proceedings of 7ht Working 

Conference on Reverse Engineering (WCRE'2000), Brisbane, Australia, 

p. 52-58. 

Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M.-A., Tilley, S. R. and Wong, 

K. (2000). "Reverse Engineering: A Roadmap". Proceedings of the 22nd 

International Conference on Software Engineering (ICSE'2000). Future 

of Software Engineering Track, Limerick Ireland, p. 47-60. 

Müller, H. A. and Klashinsky, K. (1988). "Rigi: a system for programming-in-

the-large". Proceedings of the 10th International Conference on Software 

Engineering, Singapore, IEEE Computer Society Press, p. 80-86. 

Müller, H. A., Tilley, S. R. and Wong, K. (1993). "Understanding software 

systems using reverse engineering technology perspectives from the Rigi 

project". Proceedings of the 1993 Conference of the Centre for Advanced 

Studies on Collaborative Research, Toronto, Ontario, Canada, p. 217-226. 

Neighbors, J. M. (1996). "Finding Reusable Software Components in Large 

Systems". Proceedings of the 3rd Working Conference on Reverse 

Engineering (WCRE '96), Monterey, CA, USA, p. 2-10. 

Nierstrasz, O., Ducasse, S. and Girba, T. (2005). "The story of moose: an agile 

reengineering environment." ACM SIGSOFT Software Engineering Notes 

Vol.(30), No. 5, p. 1-10. 

Olsem, M. R. (1998). "An incremental approach to software systems re-

engineering." Journal of Software Maintenance Vol.(10), No. 3, p. 181--

202. 

Paul, S. (1992). "SCRUPLE: a reengineer's tool for source code search". 

Proceedings of the 1992 Conference of the Centre for Advanced Studies 

on Collaborative research, Toronto, Ontario, Canada, IBM Press, p. 329-

346  

Pressman, R. S. (2001). "Software Engineering: A Practitioner's Approach", 

McGraw-Hill. 



References 96 

Sartipi, K., Kontogiannis, K. and Mavaddat, F. (2000). "Architectural design 

recovery using data mining techniques". Proceedings of the 4th European 

Software Maintenance and Reengineering (ESMR), Zurich, Switzerland, 

p. 129-139. 

Schäfer, T., Eichberg, M., Haupt, M. and Mezini, M. (2006). "The SEXTANT 

Software Exploration Tool." IEEE Transactions on Software Engineering 

Vol.(32), No. 9. 

Shaw, M. and Garlan, D. (1996). "Software Architecture: Perspective on an 

Emerging Discipline", Prentice Hall. 

Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N. (1997). "An examination 

of software engineering work practices". Proceedings of conference of the 

Centre for Advanced Studies on Collaborative research (CASCON), 

Toronto, Ontario, Canada, IBM Press, p. 21. 

Sjoberg, D. I. K., Dyba, T. and Jorgensen, M. (2007). "The Future of Empirical 

Methods in Software Engineering Research". Future of Software 

Engineering (FOSE), IEEE Computer Society, p. 358-378. 

Sneed, H. M. (1996). Object-Oriented COBOL Recycling. Proceedings of the 3rd 

Working Conference on Reverse Engineering (WCRE'96): 169-178. 

Sneed, M. H. and Erdos, K. (1996). "Extracting Business Rules from Source 

Code". Proceedings of the Fourth Workshop on Program Comprehension, 

Berlin, Germany, p. 240-247. 

Sommerville, I. (2000). "Software Engineering", Pearson Education. 

Standish, T. A. (1984). "An Essay on Software Reuse." IEEE Transactions on 

Software Engineering Vol.(10), No. 5, p. 494-497. 

Storey, M.-A. D., Fracchia, F. D. and Müller, H. A. (1999). "Cognitive design 

elements to support the construction of a mental model during software 

exploration." The Journal of Systems and Software Vol.(44), No. 

Tan, P.-N., Steinbach, M. and Kumar, V. (2006). "Introduction to Data Mining", 

Addison Wesley. 

Vanderlei, T. A., Durão, F. A., Martins, A. C., Garcia, V. C., Almeida, E. S. and 

Meira, S. R. L. (2007). "A Classification Mechanism for Search and 



References 97 

Retrieval Software Components". 22nd Annual ACM Symposium on 

Applied Computing (SAC), Information Retrieval Track, Seul, Korea, p.  

Ware, C. (2000). "Information Visualization", Morgan Kaufmann. 

Waters, R. C. (1988). "Program Translation Via Abstraction and 

Reimplementation." IEEE Transactions on Software Engineering 

Vol.(14), No. 8, p. 1207-1228. 

Wilkening, D. E., Loyall, J. P., Pitarys, M. J. and Littlejohn, K. (1995). "A reuse 

approach to software reengineering." Journal of Systems and Software 

Vol.(30), No. 1-2, p. 117-125. 

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B. and Wesslen, A. 

(2000). "Experimentation in Software Engineering: An Introduction", 

Boston MA: Kluwer Academic Publisher. 

Yeh, A. S., Harris, D. R. and Reubenstein, R. (1995). Recovering Abstract Data 

Types and Object Instances from a Conventional Procedural Language. 

Proceedings of Second Working Conference on Reverse Engineering: 

227-236. 

Yeh, D. and Li, Y. (2005). "Extracting Entity Relationship Diagram from a 

Table-based Legacy Database". Proceedings of the Ninth European 

Conference on Software Maintenance and Reengineering (CSMR’05), p.  

Zayour, I. and Lethbridge, T. C. (2000). "A cognitive and user centric based 

approach for reverse engineering tool design". Proceedings of the 2000 

Conference of the Centre for Advanced Studies on Collaborative 

Research, Ontario, Canada, p. 16. 

Zou, Y. and Kontogiannis, K. (2003). Incremental Transformation of Procedural 

Systems to Object Oriented Platforms. Proceedings of the 27th Annual 

International Computer Software and Applications Conference 

(COMPSAC): 290-295. 

 

 




	Final3
	Final3
	Final3
	Final3
	Capa2

	fichacatalografica

	Resto

	UltPag.PDF

